|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""train."""
|
|
|
|
import argparse
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore.communication.management import init
|
|
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
|
|
from mindspore import Model, ParallelMode
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
|
|
|
|
from src.md_dataset import create_dataset
|
|
|
|
from src.losses import OhemLoss
|
|
|
|
from src.deeplabv3 import deeplabv3_resnet50
|
|
|
|
from src.config import config
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Deeplabv3 training")
|
|
|
|
parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
|
|
|
|
parser.add_argument('--data_url', required=True, default=None, help='Train data url')
|
|
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
|
|
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
|
|
|
|
|
|
|
|
args_opt = parser.parse_args()
|
|
|
|
print(args_opt)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
|
|
|
class LossCallBack(Callback):
|
|
|
|
"""
|
|
|
|
Monitor the loss in training.
|
|
|
|
Note:
|
|
|
|
if per_print_times is 0 do not print loss.
|
|
|
|
Args:
|
|
|
|
per_print_times (int): Print loss every times. Default: 1.
|
|
|
|
"""
|
|
|
|
def __init__(self, per_print_times=1):
|
|
|
|
super(LossCallBack, self).__init__()
|
|
|
|
if not isinstance(per_print_times, int) or per_print_times < 0:
|
|
|
|
raise ValueError("print_step must be int and >= 0")
|
|
|
|
self._per_print_times = per_print_times
|
|
|
|
def step_end(self, run_context):
|
|
|
|
cb_params = run_context.original_args()
|
|
|
|
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
|
|
|
|
str(cb_params.net_outputs)))
|
|
|
|
def model_fine_tune(flags, train_net, fix_weight_layer):
|
|
|
|
checkpoint_path = flags.checkpoint_url
|
|
|
|
if checkpoint_path is None:
|
|
|
|
return
|
|
|
|
param_dict = load_checkpoint(checkpoint_path)
|
|
|
|
load_param_into_net(train_net, param_dict)
|
|
|
|
for para in train_net.trainable_params():
|
|
|
|
if fix_weight_layer in para.name:
|
|
|
|
para.requires_grad = False
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if args_opt.distribute == "true":
|
|
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
|
|
|
|
init()
|
|
|
|
args_opt.base_size = config.crop_size
|
|
|
|
args_opt.crop_size = config.crop_size
|
|
|
|
train_dataset = create_dataset(args_opt, args_opt.data_url, config.epoch_size, config.batch_size, usage="train")
|
|
|
|
dataset_size = train_dataset.get_dataset_size()
|
|
|
|
time_cb = TimeMonitor(data_size=dataset_size)
|
|
|
|
callback = [time_cb, LossCallBack()]
|
|
|
|
if config.enable_save_ckpt:
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
|
|
|
|
keep_checkpoint_max=config.save_checkpoint_num)
|
|
|
|
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
|
|
|
|
callback.append(ckpoint_cb)
|
|
|
|
net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
|
|
|
|
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
|
|
|
|
decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
|
|
|
|
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
|
|
|
|
net.set_train()
|
|
|
|
model_fine_tune(args_opt, net, 'layer')
|
|
|
|
loss = OhemLoss(config.seg_num_classes, config.ignore_label)
|
|
|
|
opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
|
|
|
|
model = Model(net, loss, opt)
|
|
|
|
model.train(config.epoch_size, train_dataset, callback)
|
|
|
|
|