You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.2 KiB
69 lines
2.2 KiB
5 years ago
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import numpy as np
|
||
|
from mindspore import context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore.ops import operations as P
|
||
|
from mindspore import Tensor
|
||
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||
|
import mindspore as ms
|
||
|
from mindspore.common.api import _executor
|
||
|
from mindspore.ops import composite as C
|
||
|
from mindspore.common.parameter import Parameter
|
||
|
|
||
|
|
||
|
class NetWithLoss(nn.Cell):
|
||
|
def __init__(self, network):
|
||
|
super(NetWithLoss, self).__init__()
|
||
|
self.loss = VirtualLoss()
|
||
|
self.network = network
|
||
|
|
||
|
def construct(self, x):
|
||
|
predict = self.network(x)
|
||
|
return self.loss(predict)
|
||
|
|
||
|
class GradWrap(nn.Cell):
|
||
|
def __init__(self, network):
|
||
|
super(GradWrap, self).__init__()
|
||
|
self.network = network
|
||
|
|
||
|
def construct(self, x):
|
||
|
return C.grad_all(self.network)(x)
|
||
|
|
||
|
# core dump, step_auto_parallel should SetInputs for transpose axis
|
||
|
def test_reshape_matmul():
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.reshape = P.Reshape()
|
||
|
self.matmul = P.MatMul()
|
||
|
self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
|
||
|
|
||
|
def construct(self, x):
|
||
|
out = self.reshape(x, (256, 25088))
|
||
|
out = self.matmul(out, self.matmul_weight)
|
||
|
return out
|
||
|
|
||
|
size = 8
|
||
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||
|
x = Tensor(np.ones([32*size, 512, 7, 7]), dtype=ms.float32)
|
||
|
|
||
|
net = GradWrap(NetWithLoss(Net()))
|
||
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||
|
_executor.compile(net, x)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_reshape_matmul()
|