You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/nlp/bert/run_ner.py

266 lines
16 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''
Bert finetune and evaluation script.
'''
import os
import argparse
import time
from src.bert_for_finetune import BertFinetuneCell, BertNER
from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
from src.dataset import create_ner_dataset
from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate, convert_labels_to_index
from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore import log as logger
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
from mindspore.train.model import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
_cur_dir = os.getcwd()
def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
""" do train """
if load_checkpoint_path == "":
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
steps_per_epoch = dataset.get_dataset_size()
# optimizer
if optimizer_cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.AdamWeightDecay.power)
params = network.trainable_params()
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
elif optimizer_cfg.optimizer == 'Lamb':
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.Lamb.power)
optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
elif optimizer_cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
momentum=optimizer_cfg.Momentum.momentum)
else:
raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
# load checkpoint into network
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
ckpoint_cb = ModelCheckpoint(prefix="ner",
directory=None if save_checkpoint_path == "" else save_checkpoint_path,
config=ckpt_config)
param_dict = load_checkpoint(load_checkpoint_path)
load_param_into_net(network, param_dict)
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
model = Model(netwithgrads)
callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
train_begin = time.time()
model.train(epoch_num, dataset, callbacks=callbacks)
train_end = time.time()
print("latency: {:.6f} s".format(train_end - train_begin))
def eval_result_print(assessment_method="accuracy", callback=None):
"""print eval result"""
if assessment_method == "accuracy":
print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
callback.acc_num / callback.total_num))
elif assessment_method == "bf1":
print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN)))
elif assessment_method == "mf1":
print("F1 {:.6f} ".format(callback.eval()[0]))
elif assessment_method == "mcc":
print("MCC {:.6f} ".format(callback.cal()))
elif assessment_method == "spearman_correlation":
print("Spearman Correlation is {:.6f} ".format(callback.cal()[0]))
else:
raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
4 years ago
def do_eval(dataset=None, network=None, use_crf="", num_class=41, assessment_method="accuracy", data_file="",
load_checkpoint_path="", vocab_file="", label_file="", tag_to_index=None, batch_size=1):
""" do eval """
if load_checkpoint_path == "":
raise ValueError("Finetune model missed, evaluation task must load finetune model!")
4 years ago
net_for_pretraining = network(bert_net_cfg, batch_size, False, num_class,
use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index)
net_for_pretraining.set_train(False)
param_dict = load_checkpoint(load_checkpoint_path)
load_param_into_net(net_for_pretraining, param_dict)
model = Model(net_for_pretraining)
if assessment_method == "clue_benchmark":
from src.cluener_evaluation import submit
submit(model=model, path=data_file, vocab_file=vocab_file, use_crf=use_crf,
label_file=label_file, tag_to_index=tag_to_index)
else:
if assessment_method == "accuracy":
callback = Accuracy()
elif assessment_method == "bf1":
callback = F1((use_crf.lower() == "true"), num_class)
elif assessment_method == "mf1":
callback = F1((use_crf.lower() == "true"), num_labels=num_class, mode="MultiLabel")
elif assessment_method == "mcc":
callback = MCC()
elif assessment_method == "spearman_correlation":
callback = Spearman_Correlation()
else:
raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
for data in dataset.create_dict_iterator(num_epochs=1):
input_data = []
for i in columns_list:
input_data.append(data[i])
input_ids, input_mask, token_type_id, label_ids = input_data
logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
callback.update(logits, label_ids)
print("==============================================================")
eval_result_print(assessment_method, callback)
print("==============================================================")
def parse_args():
"""set and check parameters."""
4 years ago
parser = argparse.ArgumentParser(description="run ner")
5 years ago
parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
help="Device type, default is Ascend")
parser.add_argument("--assessment_method", type=str, default="BF1", choices=["BF1", "clue_benchmark", "MF1"],
help="assessment_method include: [BF1, clue_benchmark, MF1], default is BF1")
5 years ago
parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"],
help="Eable train, default is false")
parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"],
help="Eable eval, default is false")
parser.add_argument("--use_crf", type=str, default="false", choices=["true", "false"],
help="Use crf, default is false")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
4 years ago
parser.add_argument("--epoch_num", type=int, default=5, help="Epoch number, default is 5.")
5 years ago
parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"],
help="Enable train data shuffle, default is true")
5 years ago
parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
help="Enable eval data shuffle, default is false")
4 years ago
parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32")
parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path, used in clue benchmark")
parser.add_argument("--label_file_path", type=str, default="", help="label file path, used in clue benchmark")
parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
parser.add_argument("--train_data_file_path", type=str, default="",
help="Data path, it is better to use absolute path")
parser.add_argument("--eval_data_file_path", type=str, default="",
help="Data path, it is better to use absolute path")
parser.add_argument("--dataset_format", type=str, default="mindrecord", choices=["mindrecord", "tfrecord"],
help="Dataset format, support mindrecord or tfrecord")
parser.add_argument("--schema_file_path", type=str, default="",
help="Schema path, it is better to use absolute path")
args_opt = parser.parse_args()
if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
raise ValueError("'train_data_file_path' must be set when do finetune task")
if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
raise ValueError("'eval_data_file_path' must be set when do evaluation task")
if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.vocab_file_path == "":
raise ValueError("'vocab_file_path' must be set to do clue benchmark")
if args_opt.use_crf.lower() == "true" and args_opt.label_file_path == "":
raise ValueError("'label_file_path' must be set to use crf")
if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.label_file_path == "":
raise ValueError("'label_file_path' must be set to do clue benchmark")
4 years ago
if args_opt.assessment_method.lower() == "clue_benchmark":
args_opt.eval_batch_size = 1
return args_opt
def run_ner():
"""run ner task"""
args_opt = parse_args()
epoch_num = args_opt.epoch_num
assessment_method = args_opt.assessment_method.lower()
load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
target = args_opt.device_target
if target == "Ascend":
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
elif target == "GPU":
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
if bert_net_cfg.compute_type != mstype.float32:
logger.warning('GPU only support fp32 temporarily, run with fp32.')
bert_net_cfg.compute_type = mstype.float32
else:
raise Exception("Target error, GPU or Ascend is supported.")
label_list = []
with open(args_opt.label_file_path) as f:
for label in f:
label_list.append(label.strip())
tag_to_index = convert_labels_to_index(label_list)
if args_opt.use_crf.lower() == "true":
max_val = max(tag_to_index.values())
tag_to_index["<START>"] = max_val + 1
tag_to_index["<STOP>"] = max_val + 2
number_labels = len(tag_to_index)
else:
number_labels = len(tag_to_index)
if args_opt.do_train.lower() == "true":
4 years ago
netwithloss = BertNER(bert_net_cfg, args_opt.train_batch_size, True, num_labels=number_labels,
use_crf=(args_opt.use_crf.lower() == "true"),
tag_to_index=tag_to_index, dropout_prob=0.1)
ds = create_ner_dataset(batch_size=args_opt.train_batch_size, repeat_count=1,
assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path,
schema_file_path=args_opt.schema_file_path, dataset_format=args_opt.dataset_format,
do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
print("==============================================================")
print("processor_name: {}".format(args_opt.device_target))
print("test_name: BERT Finetune Training")
print("model_name: {}".format("BERT+MLP+CRF" if args_opt.use_crf.lower() == "true" else "BERT + MLP"))
print("batch_size: {}".format(args_opt.train_batch_size))
do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num)
if args_opt.do_eval.lower() == "true":
if save_finetune_checkpoint_path == "":
load_finetune_checkpoint_dir = _cur_dir
else:
load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
ds.get_dataset_size(), epoch_num, "ner")
if args_opt.do_eval.lower() == "true":
4 years ago
ds = create_ner_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1,
assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path,
schema_file_path=args_opt.schema_file_path, dataset_format=args_opt.dataset_format,
do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"), drop_remainder=False)
4 years ago
do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method,
args_opt.eval_data_file_path, load_finetune_checkpoint_path, args_opt.vocab_file_path,
args_opt.label_file_path, tag_to_index, args_opt.eval_batch_size)
if __name__ == "__main__":
run_ner()