|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
'''
|
|
|
|
Bert finetune and evaluation script.
|
|
|
|
'''
|
|
|
|
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
from src.bert_for_finetune import BertFinetuneCell, BertNER
|
|
|
|
from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
|
|
|
|
from src.dataset import create_ner_dataset
|
|
|
|
from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate, convert_labels_to_index
|
|
|
|
from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
|
|
|
|
import mindspore.common.dtype as mstype
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore import log as logger
|
|
|
|
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
|
|
|
|
from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
|
|
|
|
from mindspore.train.model import Model
|
|
|
|
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
|
|
|
|
_cur_dir = os.getcwd()
|
|
|
|
|
|
|
|
|
|
|
|
def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
|
|
|
|
""" do train """
|
|
|
|
if load_checkpoint_path == "":
|
|
|
|
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
|
|
|
|
steps_per_epoch = dataset.get_dataset_size()
|
|
|
|
# optimizer
|
|
|
|
if optimizer_cfg.optimizer == 'AdamWeightDecay':
|
|
|
|
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
|
|
|
|
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
|
|
|
|
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
|
|
|
|
decay_steps=steps_per_epoch * epoch_num,
|
|
|
|
power=optimizer_cfg.AdamWeightDecay.power)
|
|
|
|
params = network.trainable_params()
|
|
|
|
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
|
|
|
|
other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
|
|
|
|
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
|
|
|
|
{'params': other_params, 'weight_decay': 0.0}]
|
|
|
|
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
|
|
|
|
elif optimizer_cfg.optimizer == 'Lamb':
|
|
|
|
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
|
|
|
|
end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
|
|
|
|
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
|
|
|
|
decay_steps=steps_per_epoch * epoch_num,
|
|
|
|
power=optimizer_cfg.Lamb.power)
|
|
|
|
optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
|
|
|
|
elif optimizer_cfg.optimizer == 'Momentum':
|
|
|
|
optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
|
|
|
|
momentum=optimizer_cfg.Momentum.momentum)
|
|
|
|
else:
|
|
|
|
raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
|
|
|
|
|
|
|
|
# load checkpoint into network
|
|
|
|
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
|
|
|
|
ckpoint_cb = ModelCheckpoint(prefix="ner",
|
|
|
|
directory=None if save_checkpoint_path == "" else save_checkpoint_path,
|
|
|
|
config=ckpt_config)
|
|
|
|
param_dict = load_checkpoint(load_checkpoint_path)
|
|
|
|
load_param_into_net(network, param_dict)
|
|
|
|
|
|
|
|
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
|
|
|
|
netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
|
|
|
|
model = Model(netwithgrads)
|
|
|
|
callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
|
|
|
|
train_begin = time.time()
|
|
|
|
model.train(epoch_num, dataset, callbacks=callbacks)
|
|
|
|
train_end = time.time()
|
|
|
|
print("latency: {:.6f} s".format(train_end - train_begin))
|
|
|
|
|
|
|
|
def eval_result_print(assessment_method="accuracy", callback=None):
|
|
|
|
"""print eval result"""
|
|
|
|
if assessment_method == "accuracy":
|
|
|
|
print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
|
|
|
|
callback.acc_num / callback.total_num))
|
|
|
|
elif assessment_method == "bf1":
|
|
|
|
print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
|
|
|
|
print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
|
|
|
|
print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN)))
|
|
|
|
elif assessment_method == "mf1":
|
|
|
|
print("F1 {:.6f} ".format(callback.eval()[0]))
|
|
|
|
elif assessment_method == "mcc":
|
|
|
|
print("MCC {:.6f} ".format(callback.cal()))
|
|
|
|
elif assessment_method == "spearman_correlation":
|
|
|
|
print("Spearman Correlation is {:.6f} ".format(callback.cal()[0]))
|
|
|
|
else:
|
|
|
|
raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
|
|
|
|
|
|
|
|
def do_eval(dataset=None, network=None, use_crf="", num_class=41, assessment_method="accuracy", data_file="",
|
|
|
|
load_checkpoint_path="", vocab_file="", label_file="", tag_to_index=None, batch_size=1):
|
|
|
|
""" do eval """
|
|
|
|
if load_checkpoint_path == "":
|
|
|
|
raise ValueError("Finetune model missed, evaluation task must load finetune model!")
|
|
|
|
net_for_pretraining = network(bert_net_cfg, batch_size, False, num_class,
|
|
|
|
use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index)
|
|
|
|
net_for_pretraining.set_train(False)
|
|
|
|
param_dict = load_checkpoint(load_checkpoint_path)
|
|
|
|
load_param_into_net(net_for_pretraining, param_dict)
|
|
|
|
model = Model(net_for_pretraining)
|
|
|
|
|
|
|
|
if assessment_method == "clue_benchmark":
|
|
|
|
from src.cluener_evaluation import submit
|
|
|
|
submit(model=model, path=data_file, vocab_file=vocab_file, use_crf=use_crf,
|
|
|
|
label_file=label_file, tag_to_index=tag_to_index)
|
|
|
|
else:
|
|
|
|
if assessment_method == "accuracy":
|
|
|
|
callback = Accuracy()
|
|
|
|
elif assessment_method == "bf1":
|
|
|
|
callback = F1((use_crf.lower() == "true"), num_class)
|
|
|
|
elif assessment_method == "mf1":
|
|
|
|
callback = F1((use_crf.lower() == "true"), num_labels=num_class, mode="MultiLabel")
|
|
|
|
elif assessment_method == "mcc":
|
|
|
|
callback = MCC()
|
|
|
|
elif assessment_method == "spearman_correlation":
|
|
|
|
callback = Spearman_Correlation()
|
|
|
|
else:
|
|
|
|
raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
|
|
|
|
|
|
|
|
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
|
|
|
|
for data in dataset.create_dict_iterator(num_epochs=1):
|
|
|
|
input_data = []
|
|
|
|
for i in columns_list:
|
|
|
|
input_data.append(data[i])
|
|
|
|
input_ids, input_mask, token_type_id, label_ids = input_data
|
|
|
|
logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
|
|
|
|
callback.update(logits, label_ids)
|
|
|
|
print("==============================================================")
|
|
|
|
eval_result_print(assessment_method, callback)
|
|
|
|
print("==============================================================")
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
"""set and check parameters."""
|
|
|
|
parser = argparse.ArgumentParser(description="run ner")
|
|
|
|
parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
|
|
|
|
help="Device type, default is Ascend")
|
|
|
|
parser.add_argument("--assessment_method", type=str, default="BF1", choices=["BF1", "clue_benchmark", "MF1"],
|
|
|
|
help="assessment_method include: [BF1, clue_benchmark, MF1], default is BF1")
|
|
|
|
parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"],
|
|
|
|
help="Eable train, default is false")
|
|
|
|
parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"],
|
|
|
|
help="Eable eval, default is false")
|
|
|
|
parser.add_argument("--use_crf", type=str, default="false", choices=["true", "false"],
|
|
|
|
help="Use crf, default is false")
|
|
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
|
|
parser.add_argument("--epoch_num", type=int, default=5, help="Epoch number, default is 5.")
|
|
|
|
parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"],
|
|
|
|
help="Enable train data shuffle, default is true")
|
|
|
|
parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
|
|
|
|
help="Enable eval data shuffle, default is false")
|
|
|
|
parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32")
|
|
|
|
parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
|
|
|
|
parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path, used in clue benchmark")
|
|
|
|
parser.add_argument("--label_file_path", type=str, default="", help="label file path, used in clue benchmark")
|
|
|
|
parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
|
|
|
|
parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
|
|
|
|
parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
|
|
|
|
parser.add_argument("--train_data_file_path", type=str, default="",
|
|
|
|
help="Data path, it is better to use absolute path")
|
|
|
|
parser.add_argument("--eval_data_file_path", type=str, default="",
|
|
|
|
help="Data path, it is better to use absolute path")
|
|
|
|
parser.add_argument("--dataset_format", type=str, default="mindrecord", choices=["mindrecord", "tfrecord"],
|
|
|
|
help="Dataset format, support mindrecord or tfrecord")
|
|
|
|
parser.add_argument("--schema_file_path", type=str, default="",
|
|
|
|
help="Schema path, it is better to use absolute path")
|
|
|
|
args_opt = parser.parse_args()
|
|
|
|
if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
|
|
|
|
raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
|
|
|
|
if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
|
|
|
|
raise ValueError("'train_data_file_path' must be set when do finetune task")
|
|
|
|
if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
|
|
|
|
raise ValueError("'eval_data_file_path' must be set when do evaluation task")
|
|
|
|
if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.vocab_file_path == "":
|
|
|
|
raise ValueError("'vocab_file_path' must be set to do clue benchmark")
|
|
|
|
if args_opt.use_crf.lower() == "true" and args_opt.label_file_path == "":
|
|
|
|
raise ValueError("'label_file_path' must be set to use crf")
|
|
|
|
if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.label_file_path == "":
|
|
|
|
raise ValueError("'label_file_path' must be set to do clue benchmark")
|
|
|
|
if args_opt.assessment_method.lower() == "clue_benchmark":
|
|
|
|
args_opt.eval_batch_size = 1
|
|
|
|
return args_opt
|
|
|
|
|
|
|
|
|
|
|
|
def run_ner():
|
|
|
|
"""run ner task"""
|
|
|
|
args_opt = parse_args()
|
|
|
|
epoch_num = args_opt.epoch_num
|
|
|
|
assessment_method = args_opt.assessment_method.lower()
|
|
|
|
load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
|
|
|
|
save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
|
|
|
|
load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
|
|
|
|
target = args_opt.device_target
|
|
|
|
if target == "Ascend":
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
|
|
|
elif target == "GPU":
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
if bert_net_cfg.compute_type != mstype.float32:
|
|
|
|
logger.warning('GPU only support fp32 temporarily, run with fp32.')
|
|
|
|
bert_net_cfg.compute_type = mstype.float32
|
|
|
|
else:
|
|
|
|
raise Exception("Target error, GPU or Ascend is supported.")
|
|
|
|
label_list = []
|
|
|
|
with open(args_opt.label_file_path) as f:
|
|
|
|
for label in f:
|
|
|
|
label_list.append(label.strip())
|
|
|
|
tag_to_index = convert_labels_to_index(label_list)
|
|
|
|
if args_opt.use_crf.lower() == "true":
|
|
|
|
max_val = max(tag_to_index.values())
|
|
|
|
tag_to_index["<START>"] = max_val + 1
|
|
|
|
tag_to_index["<STOP>"] = max_val + 2
|
|
|
|
number_labels = len(tag_to_index)
|
|
|
|
else:
|
|
|
|
number_labels = len(tag_to_index)
|
|
|
|
if args_opt.do_train.lower() == "true":
|
|
|
|
netwithloss = BertNER(bert_net_cfg, args_opt.train_batch_size, True, num_labels=number_labels,
|
|
|
|
use_crf=(args_opt.use_crf.lower() == "true"),
|
|
|
|
tag_to_index=tag_to_index, dropout_prob=0.1)
|
|
|
|
ds = create_ner_dataset(batch_size=args_opt.train_batch_size, repeat_count=1,
|
|
|
|
assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path,
|
|
|
|
schema_file_path=args_opt.schema_file_path, dataset_format=args_opt.dataset_format,
|
|
|
|
do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
|
|
|
|
print("==============================================================")
|
|
|
|
print("processor_name: {}".format(args_opt.device_target))
|
|
|
|
print("test_name: BERT Finetune Training")
|
|
|
|
print("model_name: {}".format("BERT+MLP+CRF" if args_opt.use_crf.lower() == "true" else "BERT + MLP"))
|
|
|
|
print("batch_size: {}".format(args_opt.train_batch_size))
|
|
|
|
|
|
|
|
do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num)
|
|
|
|
|
|
|
|
if args_opt.do_eval.lower() == "true":
|
|
|
|
if save_finetune_checkpoint_path == "":
|
|
|
|
load_finetune_checkpoint_dir = _cur_dir
|
|
|
|
else:
|
|
|
|
load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
|
|
|
|
load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
|
|
|
|
ds.get_dataset_size(), epoch_num, "ner")
|
|
|
|
|
|
|
|
if args_opt.do_eval.lower() == "true":
|
|
|
|
ds = create_ner_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1,
|
|
|
|
assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path,
|
|
|
|
schema_file_path=args_opt.schema_file_path, dataset_format=args_opt.dataset_format,
|
|
|
|
do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"), drop_remainder=False)
|
|
|
|
do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method,
|
|
|
|
args_opt.eval_data_file_path, load_finetune_checkpoint_path, args_opt.vocab_file_path,
|
|
|
|
args_opt.label_file_path, tag_to_index, args_opt.eval_batch_size)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
run_ner()
|