You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.3 KiB
122 lines
4.3 KiB
5 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
import numpy as np
|
||
|
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||
|
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||
|
import mindspore.dataset as ds
|
||
|
from mindspore import log as logger
|
||
|
from util import diff_mse, visualize, save_and_check_md5
|
||
|
|
||
|
GENERATE_GOLDEN = False
|
||
|
|
||
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||
|
|
||
|
|
||
|
def test_HWC2CHW(plot=False):
|
||
|
"""
|
||
|
Test HWC2CHW
|
||
|
"""
|
||
|
logger.info("Test HWC2CHW")
|
||
|
|
||
|
# First dataset
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
decode_op = c_vision.Decode()
|
||
|
hwc2chw_op = c_vision.HWC2CHW()
|
||
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||
|
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
|
||
|
|
||
|
# Second dataset
|
||
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
data2 = data2.map(input_columns=["image"], operations=decode_op)
|
||
|
|
||
|
image_transposed = []
|
||
|
image = []
|
||
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||
|
image_transposed.append(item1["image"].copy())
|
||
|
image.append(item2["image"].copy())
|
||
|
|
||
|
# check if the shape of data is transposed correctly
|
||
|
# transpose the original image from shape (H,W,C) to (C,H,W)
|
||
|
mse = diff_mse(item1['image'], item2['image'].transpose(2, 0, 1))
|
||
|
assert mse == 0
|
||
|
if plot:
|
||
|
visualize(image, image_transposed)
|
||
|
|
||
|
|
||
|
def test_HWC2CHW_md5():
|
||
|
"""
|
||
|
Test HWC2CHW(md5)
|
||
|
"""
|
||
|
logger.info("Test HWC2CHW with md5 comparison")
|
||
|
|
||
|
# First dataset
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
decode_op = c_vision.Decode()
|
||
|
hwc2chw_op = c_vision.HWC2CHW()
|
||
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||
|
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
|
||
|
|
||
|
# expected md5 from images
|
||
|
filename = "test_HWC2CHW_01_result.npz"
|
||
|
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||
|
|
||
|
|
||
|
def test_HWC2CHW_comp(plot=False):
|
||
|
"""
|
||
|
Test HWC2CHW between python and c image augmentation
|
||
|
"""
|
||
|
logger.info("Test HWC2CHW with c_transform and py_transform comparison")
|
||
|
|
||
|
# First dataset
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
decode_op = c_vision.Decode()
|
||
|
hwc2chw_op = c_vision.HWC2CHW()
|
||
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||
|
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
|
||
|
|
||
|
# Second dataset
|
||
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
transforms = [
|
||
|
py_vision.Decode(),
|
||
|
py_vision.ToTensor(),
|
||
|
py_vision.HWC2CHW()
|
||
|
]
|
||
|
transform = py_vision.ComposeOp(transforms)
|
||
|
data2 = data2.map(input_columns=["image"], operations=transform())
|
||
|
|
||
|
image_c_transposed = []
|
||
|
image_py_transposed = []
|
||
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||
|
c_image = item1["image"]
|
||
|
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||
|
|
||
|
# compare images between that applying c_transform and py_transform
|
||
|
mse = diff_mse(py_image, c_image)
|
||
|
# the images aren't exactly the same due to rounding error
|
||
|
assert mse < 0.001
|
||
|
|
||
|
image_c_transposed.append(item1["image"].copy())
|
||
|
image_py_transposed.append(item2["image"].copy())
|
||
|
|
||
|
if plot:
|
||
|
visualize(image_c_transposed, image_py_transposed)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_HWC2CHW()
|
||
|
test_HWC2CHW_md5()
|
||
|
test_HWC2CHW_comp()
|