|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
from mindspore.common.api import ms_function
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
from mindspore.nn import Cell
|
|
|
|
from mindspore.ops.operations import Tile
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
input_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.float32)
|
|
|
|
mul0 = (8, 1, 1)
|
|
|
|
input_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.float32)
|
|
|
|
mul1 = (2, 2, 2)
|
|
|
|
input_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.float32)
|
|
|
|
mul2 = (1, 1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.Tile = Tile()
|
|
|
|
|
|
|
|
self.input_x0 = Parameter(initializer(Tensor(input_x0), input_x0.shape), name='x0')
|
|
|
|
self.mul0 = mul0
|
|
|
|
self.input_x1 = Parameter(initializer(Tensor(input_x1), input_x1.shape), name='x1')
|
|
|
|
self.mul1 = mul1
|
|
|
|
self.input_x2 = Parameter(initializer(Tensor(input_x2), input_x2.shape), name='x2')
|
|
|
|
self.mul2 = mul2
|
|
|
|
|
|
|
|
@ms_function
|
|
|
|
def construct(self):
|
|
|
|
output = (self.Tile(self.input_x0, self.mul0),
|
|
|
|
self.Tile(self.input_x1, self.mul1),
|
|
|
|
self.Tile(self.input_x2, self.mul2))
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_tile():
|
|
|
|
net = Net()
|
|
|
|
output = net()
|
|
|
|
|
|
|
|
expect0 = np.tile(input_x0, mul0)
|
|
|
|
diff0 = output[0].asnumpy() - expect0
|
|
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
|
|
assert np.all(diff0 < error0)
|
|
|
|
assert output[0].shape == expect0.shape
|
|
|
|
|
|
|
|
expect1 = np.tile(input_x1, mul1)
|
|
|
|
diff1 = output[1].asnumpy() - expect1
|
|
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
|
|
assert np.all(diff1 < error1)
|
|
|
|
assert output[1].shape == expect1.shape
|
|
|
|
|
|
|
|
expect2 = np.tile(input_x2, mul2)
|
|
|
|
diff2 = output[2].asnumpy() - expect2
|
|
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
|
|
|
assert np.all(diff2 < error2)
|
|
|
|
assert output[2].shape == expect2.shape
|