You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/weighted_random_sampler_tes...

288 lines
8.7 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "gtest/gtest.h"
#include "dataset/core/constants.h"
#include "dataset/core/tensor.h"
#include "dataset/engine/data_buffer.h"
#include "dataset/engine/datasetops/source/sampler/sampler.h"
#include "dataset/engine/datasetops/source/sampler/weighted_random_sampler.h"
#include "utils/log_adapter.h"
#include <vector>
#include <unordered_set>
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestWeightedRandomSampler : public UT::Common {
public:
class DummyRandomAccessOp : public RandomAccessOp {
public:
DummyRandomAccessOp(uint64_t num_rows) {
// row count is in base class as protected member
// GetNumRowsInDataset does not need an override, the default from base class is fine.
num_rows_ = num_rows;
}
};
};
TEST_F(MindDataTestWeightedRandomSampler, TestOneshotReplacement) {
// num samples to draw.
uint64_t num_samples = 100;
uint64_t total_samples = 1000;
std::vector<double> weights(total_samples, std::rand() % 100);
std::vector<uint64_t> freq(total_samples, 0);
// create sampler with replacement = true
WeightedRandomSampler m_sampler(num_samples, weights, true);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
std::unique_ptr<DataBuffer> db;
TensorRow row;
std::vector<uint64_t> out;
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
ASSERT_EQ(num_samples, out.size());
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
ASSERT_EQ(db->eoe(), true);
}
TEST_F(MindDataTestWeightedRandomSampler, TestOneshotNoReplacement) {
// num samples to draw.
uint64_t num_samples = 100;
uint64_t total_samples = 1000;
std::vector<double> weights(total_samples, std::rand() % 100);
std::vector<uint64_t> freq(total_samples, 0);
// create sampler with replacement = replacement
WeightedRandomSampler m_sampler(num_samples, weights, false);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
std::unique_ptr<DataBuffer> db;
TensorRow row;
std::vector<uint64_t> out;
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
ASSERT_EQ(num_samples, out.size());
// Without replacement, each sample only drawn once.
for (int i = 0; i < total_samples; i++) {
if (freq[i]) {
ASSERT_EQ(freq[i], 1);
}
}
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
ASSERT_EQ(db->eoe(), true);
}
TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferReplacement) {
// num samples to draw.
uint64_t num_samples = 100;
uint64_t total_samples = 1000;
uint64_t samples_per_buffer = 10;
std::vector<double> weights(total_samples, std::rand() % 100);
// create sampler with replacement = replacement
WeightedRandomSampler m_sampler(num_samples, weights, true, samples_per_buffer);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
std::unique_ptr<DataBuffer> db;
TensorRow row;
std::vector<uint64_t> out;
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
int epoch = 0;
while (!db->eoe()) {
epoch++;
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
}
}
db.reset();
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
}
ASSERT_EQ(epoch, (num_samples + samples_per_buffer - 1) / samples_per_buffer);
ASSERT_EQ(num_samples, out.size());
}
TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferNoReplacement) {
// num samples to draw.
uint64_t num_samples = 100;
uint64_t total_samples = 100;
uint64_t samples_per_buffer = 10;
std::vector<double> weights(total_samples, std::rand() % 100);
weights[1] = 0;
weights[2] = 0;
std::vector<uint64_t> freq(total_samples, 0);
// create sampler with replacement = replacement
WeightedRandomSampler m_sampler(num_samples, weights, false, samples_per_buffer);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
std::unique_ptr<DataBuffer> db;
TensorRow row;
std::vector<uint64_t> out;
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
int epoch = 0;
while (!db->eoe()) {
epoch++;
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
db.reset();
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
}
// Without replacement, each sample only drawn once.
for (int i = 0; i < total_samples; i++) {
if (freq[i]) {
ASSERT_EQ(freq[i], 1);
}
}
ASSERT_EQ(epoch, (num_samples + samples_per_buffer - 1) / samples_per_buffer);
ASSERT_EQ(num_samples, out.size());
}
TEST_F(MindDataTestWeightedRandomSampler, TestResetReplacement) {
// num samples to draw.
uint64_t num_samples = 1000000;
uint64_t total_samples = 1000000;
std::vector<double> weights(total_samples, std::rand() % 100);
std::vector<uint64_t> freq(total_samples, 0);
// create sampler with replacement = true
WeightedRandomSampler m_sampler(num_samples, weights, true);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
std::unique_ptr<DataBuffer> db;
TensorRow row;
std::vector<uint64_t> out;
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
ASSERT_EQ(num_samples, out.size());
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
ASSERT_EQ(db->eoe(), true);
m_sampler.ResetSampler();
out.clear();
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
ASSERT_EQ(num_samples, out.size());
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
ASSERT_EQ(db->eoe(), true);
}
TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
// num samples to draw.
uint64_t num_samples = 1000000;
uint64_t total_samples = 1000000;
std::vector<double> weights(total_samples, std::rand() % 100);
std::vector<uint64_t> freq(total_samples, 0);
// create sampler with replacement = true
WeightedRandomSampler m_sampler(num_samples, weights, false);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
std::unique_ptr<DataBuffer> db;
TensorRow row;
std::vector<uint64_t> out;
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
ASSERT_EQ(num_samples, out.size());
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
ASSERT_EQ(db->eoe(), true);
m_sampler.ResetSampler();
out.clear();
freq.clear();
freq.resize(total_samples, 0);
MS_LOG(INFO) << "Resetting sampler";
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
db->PopRow(&row);
for (const auto &t : row) {
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
out.push_back(*it);
freq[*it]++;
}
}
ASSERT_EQ(num_samples, out.size());
// Without replacement, each sample only drawn once.
for (int i = 0; i < total_samples; i++) {
if (freq[i]) {
ASSERT_EQ(freq[i], 1);
}
}
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
ASSERT_EQ(db->eoe(), true);
}