You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/nlp/textcnn/train.py

88 lines
4.1 KiB

4 years ago
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################train textcnn example on movie review########################
python train.py
"""
import argparse
import math
import mindspore.nn as nn
from mindspore.nn.metrics import Accuracy
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.config import cfg_mr, cfg_subj, cfg_sst2
4 years ago
from src.textcnn import TextCNN
from src.textcnn import SoftmaxCrossEntropyExpand
from src.dataset import MovieReview, SST2, Subjectivity
4 years ago
parser = argparse.ArgumentParser(description='TextCNN')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--device_id', type=int, default=5, help='device id of GPU or Ascend.')
parser.add_argument('--dataset', type=str, default="MR", choices=['MR', 'SUBJ', 'SST2'])
4 years ago
args_opt = parser.parse_args()
if __name__ == '__main__':
rank = 0
# set context
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
context.set_context(device_id=args_opt.device_id)
if args_opt.dataset == 'MR':
cfg = cfg_mr
instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
elif args_opt.dataset == 'SUBJ':
cfg = cfg_subj
instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
elif args_opt.dataset == 'SST2':
cfg = cfg_sst2
instance = SST2(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
4 years ago
dataset = instance.create_train_dataset(batch_size=cfg.batch_size, epoch_size=cfg.epoch_size)
batch_num = dataset.get_dataset_size()
base_lr = cfg.base_lr
4 years ago
learning_rate = []
warm_up = [base_lr / math.floor(cfg.epoch_size / 5) * (i + 1) for _ in range(batch_num) for i in
4 years ago
range(math.floor(cfg.epoch_size / 5))]
shrink = [base_lr / (16 * (i + 1)) for _ in range(batch_num) for i in range(math.floor(cfg.epoch_size * 3 / 5))]
normal_run = [base_lr for _ in range(batch_num) for i in
4 years ago
range(cfg.epoch_size - math.floor(cfg.epoch_size / 5) - math.floor(cfg.epoch_size * 2 / 5))]
learning_rate = learning_rate + warm_up + normal_run + shrink
net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
num_classes=cfg.num_classes, vec_length=cfg.vec_length)
# Continue training if set pre_trained to be True
if cfg.pre_trained:
param_dict = load_checkpoint(cfg.checkpoint_path)
load_param_into_net(net, param_dict)
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=learning_rate, weight_decay=cfg.weight_decay)
loss = SoftmaxCrossEntropyExpand(sparse=True)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
config_ck = CheckpointConfig(save_checkpoint_steps=int(cfg.epoch_size*batch_num/2),
keep_checkpoint_max=cfg.keep_checkpoint_max)
time_cb = TimeMonitor(data_size=batch_num)
ckpt_save_dir = "./ckpt_" + str(rank) + "/"
ckpoint_cb = ModelCheckpoint(prefix="train_textcnn", directory=ckpt_save_dir, config=config_ck)
loss_cb = LossMonitor()
model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("train success")