You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/export/text_air.py

337 lines
10 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test network export."""
import os
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import Dense
from mindspore.nn.cell import Cell
from mindspore.nn.layer.basic import Flatten
from mindspore.nn.layer.conv import Conv2d
from mindspore.nn.layer.normalization import BatchNorm2d
from mindspore.nn.layer.pooling import MaxPool2d
from mindspore.ops import operations as P
from mindspore.ops.operations import TensorAdd
from mindspore.train.serialization import export
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None):
init_value = np.ones(shape).astype(np.float32) * 0.01
return Tensor(init_value)
def variance_scaling_raw(shape):
variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01
return Tensor(variance_scaling_value)
def weight_variable_0(shape):
zeros = np.zeros(shape).astype(np.float32)
return Tensor(zeros)
def weight_variable_1(shape):
ones = np.ones(shape).astype(np.float32)
return Tensor(ones)
def conv3x3(in_channels, out_channels, stride=1, padding=1):
"""3x3 convolution """
weight_shape = (out_channels, in_channels, 3, 3)
weight = variance_scaling_raw(weight_shape)
return Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")
def conv1x1(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
weight_shape = (out_channels, in_channels, 1, 1)
weight = variance_scaling_raw(weight_shape)
return Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")
def conv7x7(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
weight_shape = (out_channels, in_channels, 7, 7)
weight = variance_scaling_raw(weight_shape)
return Conv2d(in_channels, out_channels,
kernel_size=7, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")
def bn_with_initialize(out_channels):
shape = (out_channels)
mean = weight_variable_0(shape)
var = weight_variable_1(shape)
beta = weight_variable_0(shape)
gamma = weight_variable_1(shape)
bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn
def bn_with_initialize_last(out_channels):
shape = (out_channels)
mean = weight_variable_0(shape)
var = weight_variable_1(shape)
beta = weight_variable_0(shape)
gamma = weight_variable_0(shape)
bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn
def fc_with_initialize(input_channels, out_channels):
weight_shape = (out_channels, input_channels)
bias_shape = (out_channels)
weight = random_normal_init(weight_shape)
bias = weight_variable_0(bias_shape)
return Dense(input_channels, out_channels, weight, bias)
class ResidualBlock(Cell):
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
self.bn1 = bn_with_initialize(out_chls)
self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
self.bn2 = bn_with_initialize(out_chls)
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize_last(out_channels)
self.relu = P.ReLU()
self.add = TensorAdd()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResidualBlockWithDown(Cell):
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlockWithDown, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
self.bn1 = bn_with_initialize(out_chls)
self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
self.bn2 = bn_with_initialize(out_chls)
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize_last(out_channels)
self.relu = P.ReLU()
self.downSample = down_sample
self.conv_down_sample = conv1x1(
in_channels, out_channels, stride=stride, padding=0)
self.bn_down_sample = bn_with_initialize(out_channels)
self.add = TensorAdd()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.conv_down_sample(identity)
identity = self.bn_down_sample(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class MakeLayer0(Cell):
def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer0, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=1, down_sample=True)
self.b = block(out_channels, out_channels, stride=stride)
self.c = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
return x
class MakeLayer1(Cell):
def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer1, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
self.d = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
x = self.d(x)
return x
class MakeLayer2(Cell):
def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer2, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
self.d = block(out_channels, out_channels, stride=1)
self.e = block(out_channels, out_channels, stride=1)
self.f = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
x = self.d(x)
x = self.e(x)
x = self.f(x)
return x
class MakeLayer3(Cell):
def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer3, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
return x
class ResNet(Cell):
def __init__(self, block, layer_num, num_classes=100):
super(ResNet, self).__init__()
self.conv1 = conv7x7(3, 64, stride=2, padding=3)
self.bn1 = bn_with_initialize(64)
self.relu = P.ReLU()
self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
self.layer1 = MakeLayer0(
block, layer_num[0], in_channels=64, out_channels=256, stride=1)
self.layer2 = MakeLayer1(
block, layer_num[1], in_channels=256, out_channels=512, stride=2)
self.layer3 = MakeLayer2(
block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
self.layer4 = MakeLayer3(
block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)
self.pool = nn.AvgPool2d(7, 1)
self.fc = fc_with_initialize(512 * block.expansion, num_classes)
self.flatten = Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.pool(x)
x = self.flatten(x)
x = self.fc(x)
return x
def resnet50(num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_export_resnet_air():
net = resnet50(10)
inputs = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01)
file_name = "resnet"
export(net, inputs, file_name=file_name, file_format='AIR')
file_name += ".air"
assert os.path.exists(file_name)
os.remove(file_name)