You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
568 lines
15 KiB
568 lines
15 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""unit tests for numpy math operations"""
|
||
|
from functools import partial
|
||
|
|
||
|
import pytest
|
||
|
import numpy as onp
|
||
|
|
||
|
import mindspore.numpy as mnp
|
||
|
from mindspore import context
|
||
|
|
||
|
|
||
|
def rand_int(*shape):
|
||
|
"""return an random integer array with parameter shape"""
|
||
|
res = onp.random.randint(low=1, high=5, size=shape)
|
||
|
if isinstance(res, onp.ndarray):
|
||
|
return res.astype(onp.float32)
|
||
|
return float(res)
|
||
|
|
||
|
|
||
|
# return an random boolean array
|
||
|
def rand_bool(*shape):
|
||
|
return onp.random.rand(*shape) > 0.5
|
||
|
|
||
|
|
||
|
class Cases():
|
||
|
def __init__(self):
|
||
|
self.device_cpu = context.get_context('device_target')
|
||
|
|
||
|
self.arrs = [
|
||
|
rand_int(2),
|
||
|
rand_int(2, 3),
|
||
|
rand_int(2, 3, 4),
|
||
|
rand_int(2, 3, 4, 5),
|
||
|
]
|
||
|
|
||
|
# scalars expanded across the 0th dimension
|
||
|
self.scalars = [
|
||
|
rand_int(),
|
||
|
rand_int(1),
|
||
|
rand_int(1, 1),
|
||
|
rand_int(1, 1, 1, 1),
|
||
|
]
|
||
|
|
||
|
# empty arrays
|
||
|
self.empty_arrs = [
|
||
|
rand_int(0),
|
||
|
rand_int(4, 0),
|
||
|
rand_int(2, 0, 2),
|
||
|
rand_int(5, 0, 7, 0),
|
||
|
]
|
||
|
|
||
|
# arrays of the same size expanded across the 0th dimension
|
||
|
self.expanded_arrs = [
|
||
|
rand_int(2, 3),
|
||
|
rand_int(1, 2, 3),
|
||
|
rand_int(1, 1, 2, 3),
|
||
|
rand_int(1, 1, 1, 2, 3),
|
||
|
]
|
||
|
|
||
|
# arrays of the same size expanded across the 0th dimension
|
||
|
self.expanded_arrs = [
|
||
|
rand_int(2, 3),
|
||
|
rand_int(1, 2, 3),
|
||
|
rand_int(1, 1, 2, 3),
|
||
|
rand_int(1, 1, 1, 2, 3),
|
||
|
]
|
||
|
|
||
|
# arrays with last dimension aligned
|
||
|
self.aligned_arrs = [
|
||
|
rand_int(2, 3),
|
||
|
rand_int(1, 4, 3),
|
||
|
rand_int(5, 1, 2, 3),
|
||
|
rand_int(4, 2, 1, 1, 3),
|
||
|
]
|
||
|
|
||
|
# arrays which can be broadcast
|
||
|
self.broadcastables = [
|
||
|
rand_int(5),
|
||
|
rand_int(6, 1),
|
||
|
rand_int(7, 1, 5),
|
||
|
rand_int(8, 1, 6, 1)
|
||
|
]
|
||
|
|
||
|
# boolean arrays which can be broadcast
|
||
|
self.bool_broadcastables = [
|
||
|
rand_bool(),
|
||
|
rand_bool(1),
|
||
|
rand_bool(5),
|
||
|
rand_bool(6, 1),
|
||
|
rand_bool(7, 1, 5),
|
||
|
rand_bool(8, 1, 6, 1),
|
||
|
]
|
||
|
|
||
|
# core dimension 0 is matched for each
|
||
|
# pair of array[i] and array[i + 1]
|
||
|
self.core_broadcastables = [
|
||
|
rand_int(3),
|
||
|
rand_int(3),
|
||
|
rand_int(6),
|
||
|
rand_int(6, 4),
|
||
|
rand_int(5, 2),
|
||
|
rand_int(2),
|
||
|
rand_int(2, 9),
|
||
|
rand_int(9, 8),
|
||
|
rand_int(6),
|
||
|
rand_int(2, 6, 5),
|
||
|
rand_int(9, 2, 7),
|
||
|
rand_int(7),
|
||
|
rand_int(5, 2, 4),
|
||
|
rand_int(6, 1, 4, 9),
|
||
|
rand_int(7, 1, 5, 3, 2),
|
||
|
rand_int(8, 1, 6, 1, 2, 9),
|
||
|
]
|
||
|
|
||
|
# arrays with dimensions of size 1
|
||
|
self.nested_arrs = [
|
||
|
rand_int(1),
|
||
|
rand_int(1, 2),
|
||
|
rand_int(3, 1, 8),
|
||
|
rand_int(1, 3, 9, 1),
|
||
|
]
|
||
|
|
||
|
|
||
|
test_case = Cases()
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||
|
|
||
|
|
||
|
def mnp_add(x1, x2):
|
||
|
return mnp.add(x1, x2)
|
||
|
|
||
|
|
||
|
def onp_add(x1, x2):
|
||
|
return onp.add(x1, x2)
|
||
|
|
||
|
|
||
|
def mnp_subtract(x1, x2):
|
||
|
return mnp.subtract(x1, x2)
|
||
|
|
||
|
|
||
|
def onp_subtract(x1, x2):
|
||
|
return onp.subtract(x1, x2)
|
||
|
|
||
|
|
||
|
def mnp_mutiply(x1, x2):
|
||
|
return mnp.multiply(x1, x2)
|
||
|
|
||
|
|
||
|
def onp_multiply(x1, x2):
|
||
|
return onp.multiply(x1, x2)
|
||
|
|
||
|
|
||
|
def mnp_divide(x1, x2):
|
||
|
return mnp.divide(x1, x2)
|
||
|
|
||
|
|
||
|
def onp_divide(x1, x2):
|
||
|
return onp.divide(x1, x2)
|
||
|
|
||
|
|
||
|
def mnp_power(x1, x2):
|
||
|
return mnp.power(x1, x2)
|
||
|
|
||
|
|
||
|
def onp_power(x1, x2):
|
||
|
return onp.power(x1, x2)
|
||
|
|
||
|
|
||
|
def mnp_inner(a, b):
|
||
|
return mnp.inner(a, b)
|
||
|
|
||
|
|
||
|
def onp_inner(a, b):
|
||
|
return onp.inner(a, b)
|
||
|
|
||
|
|
||
|
def mnp_dot(a, b):
|
||
|
return mnp.dot(a, b)
|
||
|
|
||
|
|
||
|
def onp_dot(a, b):
|
||
|
return onp.dot(a, b)
|
||
|
|
||
|
|
||
|
def mnp_outer(a, b):
|
||
|
return mnp.outer(a, b)
|
||
|
|
||
|
|
||
|
def onp_outer(a, b):
|
||
|
return onp.outer(a, b)
|
||
|
|
||
|
|
||
|
def mnp_add_kwargs(x, y, where=None, out=None):
|
||
|
return mnp.add(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def onp_add_kwargs(x, y, where=None, out=None):
|
||
|
return onp.add(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def mnp_subtract_kwargs(x, y, where=None, out=None):
|
||
|
return mnp.subtract(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def onp_subtract_kwargs(x, y, where=None, out=None):
|
||
|
return onp.subtract(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def mnp_multiply_kwargs(x, y, where=None, out=None):
|
||
|
return mnp.multiply(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def onp_multiply_kwargs(x, y, where=None, out=None):
|
||
|
return onp.multiply(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def mnp_divide_kwargs(x, y, where=None, out=None):
|
||
|
return mnp.divide(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def onp_divide_kwargs(x, y, where=None, out=None):
|
||
|
return onp.divide(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def mnp_power_kwargs(x, y, where=None, out=None):
|
||
|
return mnp.power(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def onp_power_kwargs(x, y, where=None, out=None):
|
||
|
return onp.power(x, y, where=where, out=out)
|
||
|
|
||
|
|
||
|
def mnp_tensordot(x, y):
|
||
|
a = mnp.tensordot(x, y)
|
||
|
b = mnp.tensordot(x, y, axes=0)
|
||
|
c = mnp.tensordot(x, y, axes=1)
|
||
|
d = mnp.tensordot(x, y, axes=2)
|
||
|
e = mnp.tensordot(x, y, axes=(3, 0))
|
||
|
f = mnp.tensordot(x, y, axes=[2, 1])
|
||
|
g = mnp.tensordot(x, y, axes=((2, 3), (0, 1)))
|
||
|
h = mnp.tensordot(x, y, axes=[[3, 2], [1, 0]])
|
||
|
return a, b, c, d, e, f, g, h
|
||
|
|
||
|
|
||
|
def onp_tensordot(x, y):
|
||
|
a = onp.tensordot(x, y)
|
||
|
b = onp.tensordot(x, y, axes=0)
|
||
|
c = onp.tensordot(x, y, axes=1)
|
||
|
d = onp.tensordot(x, y, axes=2)
|
||
|
e = onp.tensordot(x, y, axes=(3, 0))
|
||
|
f = onp.tensordot(x, y, axes=[2, 1])
|
||
|
g = onp.tensordot(x, y, axes=((2, 3), (0, 1)))
|
||
|
h = onp.tensordot(x, y, axes=[[3, 2], [1, 0]])
|
||
|
return a, b, c, d, e, f, g, h
|
||
|
|
||
|
|
||
|
def run_binop_test(mnp_fn, onp_fn):
|
||
|
for arr in test_case.arrs:
|
||
|
match_res(mnp_fn, onp_fn, arr, arr)
|
||
|
|
||
|
for scalar in test_case.scalars:
|
||
|
match_res(mnp_fn, onp_fn, arr, scalar)
|
||
|
match_res(mnp_fn, onp_fn, scalar, arr)
|
||
|
|
||
|
for scalar1 in test_case.scalars:
|
||
|
for scalar2 in test_case.scalars:
|
||
|
match_res(mnp_fn, onp_fn, scalar1, scalar2)
|
||
|
|
||
|
for expanded_arr1 in test_case.expanded_arrs:
|
||
|
for expanded_arr2 in test_case.expanded_arrs:
|
||
|
match_res(mnp_fn, onp_fn, expanded_arr1, expanded_arr2)
|
||
|
|
||
|
for broadcastable1 in test_case.broadcastables:
|
||
|
for broadcastable2 in test_case.broadcastables:
|
||
|
match_res(mnp_fn, onp_fn, broadcastable1, broadcastable2)
|
||
|
|
||
|
|
||
|
def run_multi_test(mnp_fn, onp_fn, arrs):
|
||
|
mnp_arrs = map(mnp.asarray, arrs)
|
||
|
for actual, expected in zip(mnp_fn(*mnp_arrs), onp_fn(*arrs)):
|
||
|
match_array(actual.asnumpy(), expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_add():
|
||
|
run_binop_test(mnp_add, onp_add)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_subtract():
|
||
|
run_binop_test(mnp_subtract, onp_subtract)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_multiply():
|
||
|
run_binop_test(mnp_mutiply, onp_multiply)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_divide():
|
||
|
run_binop_test(mnp_divide, onp_divide)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_power():
|
||
|
run_binop_test(mnp_power, onp_power)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_inner():
|
||
|
for arr1 in test_case.aligned_arrs:
|
||
|
for arr2 in test_case.aligned_arrs:
|
||
|
match_res(mnp_inner, onp_inner, arr1, arr2)
|
||
|
|
||
|
for scalar1 in test_case.scalars:
|
||
|
for scalar2 in test_case.scalars:
|
||
|
match_res(mnp_inner, onp_inner,
|
||
|
scalar1, scalar2)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_dot():
|
||
|
# test case (1D, 1D)
|
||
|
match_res(mnp_dot, onp_dot, rand_int(3), rand_int(3))
|
||
|
|
||
|
# test case (2D, 2D)
|
||
|
match_res(mnp_dot, onp_dot, rand_int(4, 7), rand_int(7, 2))
|
||
|
|
||
|
# test case (0D, _) (_, 0D)
|
||
|
match_res(mnp_dot, onp_dot, rand_int(), rand_int(1, 9, 3))
|
||
|
match_res(mnp_dot, onp_dot, rand_int(8, 5, 6, 3), rand_int())
|
||
|
|
||
|
# test case (ND, 1D)
|
||
|
match_res(mnp_dot, onp_dot, rand_int(2, 4, 5), rand_int(5))
|
||
|
|
||
|
# test case (ND, MD)
|
||
|
match_res(mnp_dot, onp_dot, rand_int(5, 4, 1, 8), rand_int(8, 3))
|
||
|
|
||
|
for i in range(8):
|
||
|
match_res(mnp_dot, onp_dot,
|
||
|
test_case.core_broadcastables[2*i], test_case.core_broadcastables[2*i + 1])
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_outer():
|
||
|
run_binop_test(mnp_outer, onp_outer)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_add_kwargs():
|
||
|
for where in test_case.bool_broadcastables[:2]:
|
||
|
for x in test_case.broadcastables[:2]:
|
||
|
for y in test_case.broadcastables[:2]:
|
||
|
shape_out = onp.broadcast(where, x, y).shape
|
||
|
out = rand_int(*shape_out)
|
||
|
match_res(mnp_add_kwargs, onp_add_kwargs, x, y, where, out)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_tensordot():
|
||
|
x = rand_int(4, 2, 7, 7)
|
||
|
y = rand_int(7, 7, 6)
|
||
|
run_multi_test(mnp_tensordot, onp_tensordot, (x, y))
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_type_promotion():
|
||
|
arr = rand_int(2, 3)
|
||
|
onp_sum = onp_add(arr, arr)
|
||
|
|
||
|
a = mnp.asarray(arr, dtype='float16')
|
||
|
b = mnp.asarray(arr, dtype='float32')
|
||
|
c = mnp.asarray(arr, dtype='int32')
|
||
|
|
||
|
match_array(mnp_add(a, b).asnumpy(), onp_sum)
|
||
|
match_array(mnp_add(b, c).asnumpy(), onp_sum)
|
||
|
|
||
|
|
||
|
def mnp_absolute(x):
|
||
|
return mnp.absolute(x)
|
||
|
|
||
|
|
||
|
def onp_absolute(x):
|
||
|
return onp.absolute(x)
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_absolute():
|
||
|
arr = rand_int(2, 3)
|
||
|
|
||
|
a = mnp.asarray(arr, dtype='float16')
|
||
|
b = mnp.asarray(arr, dtype='float32')
|
||
|
c = mnp.asarray(arr, dtype='uint8')
|
||
|
d = mnp.asarray(arr, dtype='bool')
|
||
|
|
||
|
match_array(mnp_absolute(a).asnumpy(), onp_absolute(a.asnumpy()))
|
||
|
match_array(mnp_absolute(b).asnumpy(), onp_absolute(b.asnumpy()))
|
||
|
match_array(mnp_absolute(c).asnumpy(), onp_absolute(c.asnumpy()))
|
||
|
match_array(mnp_absolute(d).asnumpy(), onp_absolute(d.asnumpy()))
|
||
|
|
||
|
where = rand_int(2, 3).astype('bool')
|
||
|
out = rand_int(2, 3)
|
||
|
match_array(mnp.absolute(a, out=mnp.asarray(out), where=mnp.asarray(where)).asnumpy(),
|
||
|
onp.absolute(a.asnumpy(), out=out, where=where))
|
||
|
|
||
|
|
||
|
def mnp_add_dtype(x1, x2, out, where):
|
||
|
a = mnp.add(x1, x2, dtype=mnp.float16)
|
||
|
b = mnp.add(x1, x2, out=out, dtype=mnp.float16)
|
||
|
c = mnp.add(x1, x2, where=where, dtype=mnp.float16)
|
||
|
d = mnp.add(x1, x2, out=out, where=where, dtype=mnp.float16)
|
||
|
return a, b, c, d
|
||
|
|
||
|
|
||
|
def onp_add_dtype(x1, x2, out, where):
|
||
|
a = onp.add(x1, x2, dtype=onp.float16)
|
||
|
b = onp.add(x1, x2, out=out, dtype=onp.float16)
|
||
|
c = onp.add(x1, x2, where=where, dtype=onp.float16)
|
||
|
d = onp.add(x1, x2, out=out, where=where, dtype=onp.float16)
|
||
|
return a, b, c, d
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_add_dtype():
|
||
|
x1 = rand_int(2, 3).astype('int32')
|
||
|
x2 = rand_int(2, 3).astype('int32')
|
||
|
out = rand_int(2, 3).astype('float32')
|
||
|
where = rand_bool(2, 3)
|
||
|
arrs = (x1, x2, out, where)
|
||
|
mnp_arrs = map(mnp.array, arrs)
|
||
|
mnp_res = mnp_add_dtype(*mnp_arrs)
|
||
|
onp_res = onp_add_dtype(*arrs)
|
||
|
for actual, expected in zip(mnp_res, onp_res):
|
||
|
assert actual.asnumpy().dtype == expected.dtype
|
||
|
|
||
|
|
||
|
# check if the output from mnp function and onp function applied on the arrays are matched
|
||
|
|
||
|
|
||
|
def match_res(mnp_fn, onp_fn, *arrs):
|
||
|
mnp_arrs = map(partial(mnp.asarray, dtype='float32'), arrs)
|
||
|
mnp_res = mnp_fn(*mnp_arrs)
|
||
|
onp_res = onp_fn(*arrs)
|
||
|
if isinstance(mnp_res, (tuple, list)):
|
||
|
for actual, expected in zip(mnp_res, onp_res):
|
||
|
match_array(actual.asnumpy(), expected)
|
||
|
else:
|
||
|
match_array(mnp_res.asnumpy(), onp_res)
|
||
|
|
||
|
|
||
|
def match_array(actual, expected, error=5):
|
||
|
if error > 0:
|
||
|
onp.testing.assert_almost_equal(actual.tolist(), expected.tolist(),
|
||
|
decimal=error)
|
||
|
else:
|
||
|
onp.testing.assert_equal(actual.tolist(), expected.tolist())
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_exception_innner():
|
||
|
with pytest.raises(ValueError):
|
||
|
mnp.inner(mnp.asarray(test_case.arrs[0]),
|
||
|
mnp.asarray(test_case.arrs[1]))
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_exception_add():
|
||
|
with pytest.raises(ValueError):
|
||
|
mnp.add(mnp.asarray(test_case.arrs[1]), mnp.asarray(test_case.arrs[2]))
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_exception_mean():
|
||
|
with pytest.raises(ValueError):
|
||
|
mnp.mean(mnp.asarray(test_case.arrs[0]), (-1, 0))
|