|
|
|
/**
|
|
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
#include <fstream>
|
|
|
|
#include <iostream>
|
|
|
|
#include <memory>
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
#include "common/common.h"
|
|
|
|
#include "dataset/core/client.h"
|
|
|
|
#include "dataset/core/global_context.h"
|
|
|
|
#include "dataset/engine/datasetops/source/celeba_op.h"
|
|
|
|
#include "dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
|
|
|
|
#include "dataset/util/de_error.h"
|
|
|
|
#include "dataset/util/status.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "utils/log_adapter.h"
|
|
|
|
#include "securec.h"
|
|
|
|
|
|
|
|
using namespace mindspore::dataset;
|
|
|
|
using mindspore::MsLogLevel::ERROR;
|
|
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
|
|
using mindspore::LogStream;
|
|
|
|
|
|
|
|
std::shared_ptr<RepeatOp> Repeat(int repeat_cnt);
|
|
|
|
|
|
|
|
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
|
|
|
|
|
|
|
|
std::shared_ptr<CelebAOp> Celeba(int32_t num_workers, int32_t rows_per_buffer, int32_t queue_size,
|
|
|
|
const std::string &dir, int64_t num_samples = 0,
|
|
|
|
std::unique_ptr<Sampler> sampler = nullptr, bool decode = false,
|
|
|
|
const std::string &dataset_type="all") {
|
|
|
|
std::shared_ptr<CelebAOp> so;
|
|
|
|
CelebAOp::Builder builder;
|
|
|
|
Status rc = builder.SetNumWorkers(num_workers).SetCelebADir(dir).SetRowsPerBuffer(rows_per_buffer)
|
|
|
|
.SetOpConnectorSize(queue_size).SetSampler(std::move(sampler)).SetDecode(decode)
|
|
|
|
.SetNumSamples(num_samples).SetDatasetType(dataset_type).Build(&so);
|
|
|
|
return so;
|
|
|
|
}
|
|
|
|
|
|
|
|
class MindDataTestCelebaDataset : public UT::DatasetOpTesting {
|
|
|
|
protected:
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(MindDataTestCelebaDataset, TestSequentialCeleba) {
|
|
|
|
std::string dir = datasets_root_path_ + "/testCelebAData/";
|
|
|
|
uint32_t expect_labels[2][40] = {{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
|
|
|
|
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}};
|
|
|
|
uint32_t count = 0;
|
|
|
|
auto tree = Build({Celeba(16, 2, 32, dir)});
|
|
|
|
tree->Prepare();
|
|
|
|
Status rc = tree->Launch();
|
|
|
|
if (rc.IsError()) {
|
|
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
|
|
EXPECT_TRUE(false);
|
|
|
|
} else {
|
|
|
|
DatasetIterator di(tree);
|
|
|
|
TensorMap tersor_map;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
EXPECT_TRUE(rc.IsOk());
|
|
|
|
while (tersor_map.size() != 0) {
|
|
|
|
uint32_t label;
|
|
|
|
for (int index = 0; index < 40; index++) {
|
|
|
|
tersor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
|
|
|
|
EXPECT_TRUE(expect_labels[count][index] == label);
|
|
|
|
}
|
|
|
|
count++;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
}
|
|
|
|
EXPECT_TRUE(count == 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestCelebaDataset, TestCelebaRepeat) {
|
|
|
|
std::string dir = datasets_root_path_ + "/testCelebAData/";
|
|
|
|
uint32_t expect_labels[4][40] = {{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
|
|
|
|
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
|
|
|
|
{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
|
|
|
|
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}};
|
|
|
|
uint32_t count = 0;
|
|
|
|
auto tree = Build({Celeba(16, 2, 32, dir), Repeat(2)});
|
|
|
|
tree->Prepare();
|
|
|
|
Status rc = tree->Launch();
|
|
|
|
if (rc.IsError()) {
|
|
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
|
|
EXPECT_TRUE(false);
|
|
|
|
} else {
|
|
|
|
DatasetIterator di(tree);
|
|
|
|
TensorMap tersor_map;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
EXPECT_TRUE(rc.IsOk());
|
|
|
|
while (tersor_map.size() != 0) {
|
|
|
|
uint32_t label;
|
|
|
|
for (int index = 0; index < 40; index++) {
|
|
|
|
tersor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
|
|
|
|
EXPECT_TRUE(expect_labels[count][index] == label);
|
|
|
|
}
|
|
|
|
count++;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
}
|
|
|
|
EXPECT_TRUE(count == 4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestCelebaDataset, TestSubsetRandomSamplerCeleba) {
|
|
|
|
std::vector<int64_t> indices({1});
|
|
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<SubsetRandomSampler>(indices);
|
|
|
|
uint32_t expect_labels[1][40] = {{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}};
|
|
|
|
std::string dir = datasets_root_path_ + "/testCelebAData/";
|
|
|
|
uint32_t count = 0;
|
|
|
|
auto tree = Build({Celeba(16, 2, 32, dir, 0, std::move(sampler))});
|
|
|
|
tree->Prepare();
|
|
|
|
Status rc = tree->Launch();
|
|
|
|
if (rc.IsError()) {
|
|
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
|
|
EXPECT_TRUE(false);
|
|
|
|
} else {
|
|
|
|
DatasetIterator di(tree);
|
|
|
|
TensorMap tersor_map;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
EXPECT_TRUE(rc.IsOk());
|
|
|
|
while (tersor_map.size() != 0) {
|
|
|
|
uint32_t label;
|
|
|
|
for (int index = 0; index < 40; index++) {
|
|
|
|
tersor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
|
|
|
|
EXPECT_TRUE(expect_labels[count][index] == label);
|
|
|
|
}
|
|
|
|
count++;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
}
|
|
|
|
EXPECT_TRUE(count == 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestCelebaDataset, TestCelebaNumSamples) {
|
|
|
|
std::string dir = datasets_root_path_ + "/testCelebAData/";
|
|
|
|
uint32_t count = 0;
|
|
|
|
auto tree = Build({Celeba(16, 2, 32, dir, 1)});
|
|
|
|
tree->Prepare();
|
|
|
|
Status rc = tree->Launch();
|
|
|
|
if (rc.IsError()) {
|
|
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
|
|
EXPECT_TRUE(false);
|
|
|
|
} else {
|
|
|
|
DatasetIterator di(tree);
|
|
|
|
TensorMap tersor_map;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
EXPECT_TRUE(rc.IsOk());
|
|
|
|
while (tersor_map.size() != 0) {
|
|
|
|
count++;
|
|
|
|
di.GetNextAsMap(&tersor_map);
|
|
|
|
}
|
|
|
|
EXPECT_TRUE(count == 1);
|
|
|
|
}
|
|
|
|
}
|