|
|
|
/**
|
|
|
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
#include "common/common.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
#include "dataset/core/constants.h"
|
|
|
|
#include "dataset/core/tensor.h"
|
|
|
|
#include "dataset/engine/data_buffer.h"
|
|
|
|
#include "dataset/engine/datasetops/source/sampler/sampler.h"
|
|
|
|
#include "dataset/engine/datasetops/source/sampler/weighted_random_sampler.h"
|
|
|
|
#include "utils/log_adapter.h"
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <unordered_set>
|
|
|
|
|
|
|
|
using namespace mindspore::dataset;
|
|
|
|
using mindspore::MsLogLevel::INFO;
|
|
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
|
|
using mindspore::LogStream;
|
|
|
|
|
|
|
|
class MindDataTestWeightedRandomSampler : public UT::Common {
|
|
|
|
public:
|
|
|
|
class DummyRandomAccessOp : public RandomAccessOp {
|
|
|
|
public:
|
|
|
|
DummyRandomAccessOp(uint64_t num_rows) : num_rows_(num_rows) {};
|
|
|
|
Status GetNumSamples(int64_t *num) const {
|
|
|
|
*num = num_rows_;
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
Status GetNumRowsInDataset(int64_t *num) const {
|
|
|
|
*num = num_rows_;
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
uint64_t num_rows_;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(MindDataTestWeightedRandomSampler, TestOneshotReplacement) {
|
|
|
|
// num samples to draw.
|
|
|
|
uint64_t num_samples = 100;
|
|
|
|
uint64_t total_samples = 1000;
|
|
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
std::vector<uint64_t> freq(total_samples, 0);
|
|
|
|
|
|
|
|
// create sampler with replacement = true
|
|
|
|
WeightedRandomSampler m_sampler(weights, num_samples, true);
|
|
|
|
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
|
|
|
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
|
|
|
|
|
|
|
std::unique_ptr<DataBuffer> db;
|
|
|
|
TensorRow row;
|
|
|
|
std::vector<uint64_t> out;
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
ASSERT_EQ(db->eoe(), true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestWeightedRandomSampler, TestOneshotNoReplacement) {
|
|
|
|
// num samples to draw.
|
|
|
|
uint64_t num_samples = 100;
|
|
|
|
uint64_t total_samples = 1000;
|
|
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
std::vector<uint64_t> freq(total_samples, 0);
|
|
|
|
|
|
|
|
// create sampler with replacement = replacement
|
|
|
|
WeightedRandomSampler m_sampler(weights, num_samples, false);
|
|
|
|
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
|
|
|
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
|
|
|
|
|
|
|
std::unique_ptr<DataBuffer> db;
|
|
|
|
TensorRow row;
|
|
|
|
std::vector<uint64_t> out;
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
|
|
|
|
// Without replacement, each sample only drawn once.
|
|
|
|
for (int i = 0; i < total_samples; i++) {
|
|
|
|
if (freq[i]) {
|
|
|
|
ASSERT_EQ(freq[i], 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
ASSERT_EQ(db->eoe(), true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferReplacement) {
|
|
|
|
// num samples to draw.
|
|
|
|
uint64_t num_samples = 100;
|
|
|
|
uint64_t total_samples = 1000;
|
|
|
|
uint64_t samples_per_buffer = 10;
|
|
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
|
|
|
|
// create sampler with replacement = replacement
|
|
|
|
WeightedRandomSampler m_sampler(weights, num_samples, true, samples_per_buffer);
|
|
|
|
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
|
|
|
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
|
|
|
|
|
|
|
std::unique_ptr<DataBuffer> db;
|
|
|
|
TensorRow row;
|
|
|
|
std::vector<uint64_t> out;
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
int epoch = 0;
|
|
|
|
while (!db->eoe()) {
|
|
|
|
epoch++;
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
db.reset();
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_EQ(epoch, (num_samples + samples_per_buffer - 1) / samples_per_buffer);
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferNoReplacement) {
|
|
|
|
// num samples to draw.
|
|
|
|
uint64_t num_samples = 100;
|
|
|
|
uint64_t total_samples = 100;
|
|
|
|
uint64_t samples_per_buffer = 10;
|
|
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
weights[1] = 0;
|
|
|
|
weights[2] = 0;
|
|
|
|
std::vector<uint64_t> freq(total_samples, 0);
|
|
|
|
|
|
|
|
// create sampler with replacement = replacement
|
|
|
|
WeightedRandomSampler m_sampler(weights, num_samples, false, samples_per_buffer);
|
|
|
|
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
|
|
|
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
|
|
|
|
|
|
|
std::unique_ptr<DataBuffer> db;
|
|
|
|
TensorRow row;
|
|
|
|
std::vector<uint64_t> out;
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
int epoch = 0;
|
|
|
|
while (!db->eoe()) {
|
|
|
|
epoch++;
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
db.reset();
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Without replacement, each sample only drawn once.
|
|
|
|
for (int i = 0; i < total_samples; i++) {
|
|
|
|
if (freq[i]) {
|
|
|
|
ASSERT_EQ(freq[i], 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_EQ(epoch, (num_samples + samples_per_buffer - 1) / samples_per_buffer);
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestWeightedRandomSampler, TestResetReplacement) {
|
|
|
|
// num samples to draw.
|
|
|
|
uint64_t num_samples = 1000000;
|
|
|
|
uint64_t total_samples = 1000000;
|
|
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
std::vector<uint64_t> freq(total_samples, 0);
|
|
|
|
|
|
|
|
// create sampler with replacement = true
|
|
|
|
WeightedRandomSampler m_sampler(weights, num_samples, true);
|
|
|
|
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
|
|
|
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
|
|
|
|
|
|
|
std::unique_ptr<DataBuffer> db;
|
|
|
|
TensorRow row;
|
|
|
|
std::vector<uint64_t> out;
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
ASSERT_EQ(db->eoe(), true);
|
|
|
|
|
|
|
|
m_sampler.Reset();
|
|
|
|
out.clear();
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
ASSERT_EQ(db->eoe(), true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
|
|
|
// num samples to draw.
|
|
|
|
uint64_t num_samples = 1000000;
|
|
|
|
uint64_t total_samples = 1000000;
|
|
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
std::vector<uint64_t> freq(total_samples, 0);
|
|
|
|
|
|
|
|
// create sampler with replacement = true
|
|
|
|
WeightedRandomSampler m_sampler(weights, num_samples, false);
|
|
|
|
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
|
|
|
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
|
|
|
|
|
|
|
std::unique_ptr<DataBuffer> db;
|
|
|
|
TensorRow row;
|
|
|
|
std::vector<uint64_t> out;
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
ASSERT_EQ(db->eoe(), true);
|
|
|
|
|
|
|
|
m_sampler.Reset();
|
|
|
|
out.clear();
|
|
|
|
freq.clear();
|
|
|
|
freq.resize(total_samples, 0);
|
|
|
|
MS_LOG(INFO) << "Resetting sampler";
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
db->PopRow(&row);
|
|
|
|
for (const auto &t : row) {
|
|
|
|
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
|
|
|
out.push_back(*it);
|
|
|
|
freq[*it]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_EQ(num_samples, out.size());
|
|
|
|
|
|
|
|
// Without replacement, each sample only drawn once.
|
|
|
|
for (int i = 0; i < total_samples; i++) {
|
|
|
|
if (freq[i]) {
|
|
|
|
ASSERT_EQ(freq[i], 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_EQ(m_sampler.GetNextBuffer(&db), Status::OK());
|
|
|
|
ASSERT_EQ(db->eoe(), true);
|
|
|
|
}
|