You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/gnn/bgcf/train.py

115 lines
4.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
BGCF training script.
"""
import time
from mindspore import Tensor
import mindspore.context as context
from mindspore.common import dtype as mstype
4 years ago
from mindspore.train.serialization import save_checkpoint
from src.bgcf import BGCF
from src.config import parser_args
4 years ago
from src.utils import convert_item_id
from src.callback import TrainBGCF
from src.dataset import load_graph, create_dataset
4 years ago
def train():
"""Train"""
num_user = train_graph.graph_info()["node_num"][0]
num_item = train_graph.graph_info()["node_num"][1]
num_pairs = train_graph.graph_info()['edge_num'][0]
bgcfnet = BGCF([parser.input_dim, num_user, num_item],
parser.embedded_dimension,
parser.activation,
parser.neighbor_dropout,
num_user,
num_item,
parser.input_dim)
train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate,
parser.epsilon, parser.dist_reg)
train_net.set_train(True)
itr = train_ds.create_dict_iterator(parser.num_epoch, output_numpy=True)
num_iter = int(num_pairs / parser.batch_pairs)
for _epoch in range(1, parser.num_epoch + 1):
epoch_start = time.time()
iter_num = 1
for data in itr:
u_id = Tensor(data["users"], mstype.int32)
pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32)
neg_item_id = Tensor(convert_item_id(data["neg_item_id"], num_user), mstype.int32)
pos_users = Tensor(data["pos_users"], mstype.int32)
pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32)
u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32)
u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32)
u_gnew_neighs = Tensor(convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32)
i_group_nodes = Tensor(convert_item_id(data["i_group_nodes"], num_user), mstype.int32)
i_neighs = Tensor(data["i_neighs"], mstype.int32)
i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32)
neg_group_nodes = Tensor(convert_item_id(data["neg_group_nodes"], num_user), mstype.int32)
neg_neighs = Tensor(data["neg_neighs"], mstype.int32)
neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32)
train_loss = train_net(u_id,
pos_item_id,
neg_item_id,
pos_users,
pos_items,
u_group_nodes,
u_neighs,
u_gnew_neighs,
i_group_nodes,
i_neighs,
i_gnew_neighs,
neg_group_nodes,
neg_neighs,
neg_gnew_neighs)
if iter_num == num_iter:
print('Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num,
'loss',
'{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start))
iter_num += 1
if _epoch % parser.eval_interval == 0:
4 years ago
save_checkpoint(bgcfnet, parser.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch))
if __name__ == "__main__":
parser = parser_args()
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend",
save_graphs=False,
device_id=int(parser.device))
4 years ago
train_graph, _, sampled_graph_list = load_graph(parser.datapath)
train_ds = create_dataset(train_graph, sampled_graph_list, parser.workers, batch_size=parser.batch_pairs,
num_samples=parser.raw_neighs, num_bgcn_neigh=parser.gnew_neighs, num_neg=parser.num_neg)
4 years ago
train()