|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test model train """
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor, Parameter, Model
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
# fn is a funcation use i as input
|
|
|
|
def lr_gen(fn, epoch_size):
|
|
|
|
for i in range(epoch_size):
|
|
|
|
yield fn(i)
|
|
|
|
|
|
|
|
|
|
|
|
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
|
|
|
"""me_train_tensor"""
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
|
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr_gen(lambda i: 0.1, epoch_size), 0.9,
|
|
|
|
0.01, 1024)
|
|
|
|
Model(net, loss, opt)
|
|
|
|
_network = nn.WithLossCell(net, loss)
|
|
|
|
_train_net = nn.TrainOneStepCell(_network, opt)
|
|
|
|
_train_net.set_train()
|
|
|
|
label_np = np.argmax(label_np, axis=-1).astype(np.int32)
|
|
|
|
for epoch in range(0, epoch_size):
|
|
|
|
print(f"epoch %d" % (epoch))
|
|
|
|
_train_net(Tensor(input_np), Tensor(label_np))
|
|
|
|
|
|
|
|
|
|
|
|
def test_bias_add(test_with_simu):
|
|
|
|
"""test_bias_add"""
|
|
|
|
import mindspore.context as context
|
|
|
|
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
|
|
|
|
# training api is implemented under Graph mode
|
|
|
|
if is_pynative_mode:
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
if test_with_simu:
|
|
|
|
return
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
"""Net definition"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
output_channels,
|
|
|
|
bias_init='zeros',
|
|
|
|
):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
|
|
|
|
if isinstance(bias_init, Tensor):
|
|
|
|
if bias_init.dim() != 1 or bias_init.shape()[0] != output_channels:
|
|
|
|
raise ValueError("bias_init shape error")
|
|
|
|
|
|
|
|
self.bias = Parameter(initializer(
|
|
|
|
bias_init, [output_channels]), name="bias")
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
return self.biasAdd(input_x, self.bias)
|
|
|
|
|
|
|
|
bias_init = Tensor(np.ones([3]).astype(np.float32))
|
|
|
|
input_np = np.ones([1, 3, 3, 3], np.float32)
|
|
|
|
label_np = np.ones([1, 3, 3, 3], np.int32) * 2
|
|
|
|
me_train_tensor(Net(3, bias_init=bias_init), input_np, label_np)
|
|
|
|
|
|
|
|
|
|
|
|
def test_conv(test_with_simu):
|
|
|
|
"""test_conv"""
|
|
|
|
import mindspore.context as context
|
|
|
|
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
|
|
|
|
# training api is implemented under Graph mode
|
|
|
|
if is_pynative_mode:
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
if test_with_simu:
|
|
|
|
return
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
"Net definition"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
cin,
|
|
|
|
cout,
|
|
|
|
kernel_size):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
|
|
|
|
self.conv = nn.Conv2d(cin,
|
|
|
|
cout,
|
|
|
|
kernel_size)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
return self.conv(input_x)
|
|
|
|
|
|
|
|
net = Net(3, 6, (3, 3))
|
|
|
|
input_np = np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01
|
|
|
|
label_np = np.ones([1, 6, 32, 32]).astype(np.int32)
|
|
|
|
me_train_tensor(net, input_np, label_np)
|
|
|
|
|
|
|
|
|
|
|
|
def test_net():
|
|
|
|
"""test_net"""
|
|
|
|
import mindspore.context as context
|
|
|
|
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
|
|
|
|
# training api is implemented under Graph mode
|
|
|
|
if is_pynative_mode:
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
"""Net definition"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01)
|
|
|
|
self.conv = nn.Conv2d(3, 64, (7, 7), pad_mode="same", stride=2)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.bn = nn.BatchNorm2d(64)
|
|
|
|
self.mean = P.ReduceMean(keep_dims=True)
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.dense = nn.Dense(64, 12)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
output = input_x
|
|
|
|
output = self.conv(output)
|
|
|
|
output = self.bn(output)
|
|
|
|
output = self.relu(output)
|
|
|
|
output = self.mean(output, (-2, -1))
|
|
|
|
output = self.flatten(output)
|
|
|
|
output = self.dense(output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
net = Net()
|
|
|
|
input_np = np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01
|
|
|
|
label_np = np.ones([32, 12]).astype(np.int32)
|
|
|
|
me_train_tensor(net, input_np, label_np)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bn():
|
|
|
|
"""test_bn"""
|
|
|
|
import mindspore.context as context
|
|
|
|
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
|
|
|
|
# training api is implemented under Graph mode
|
|
|
|
if is_pynative_mode:
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
"""Net definition"""
|
|
|
|
|
|
|
|
def __init__(self, cin, cout):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.bn = nn.BatchNorm2d(cin)
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.dense = nn.Dense(cin, cout)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
output = input_x
|
|
|
|
output = self.bn(output)
|
|
|
|
output = self.flatten(output)
|
|
|
|
output = self.dense(output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
net = Net(2048, 16)
|
|
|
|
input_np = np.ones([32, 2048, 1, 1]).astype(np.float32) * 0.01
|
|
|
|
label_np = np.ones([32, 16]).astype(np.int32)
|
|
|
|
me_train_tensor(net, input_np, label_np)
|