You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
1.9 KiB
55 lines
1.9 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
from mindspore.ops.operations import _inner_ops as inner
|
||
|
|
||
|
class MatMul_d(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(MatMul_d, self).__init__()
|
||
|
self.test_dynamic = inner.GpuConvertToDynamicShape()
|
||
|
self.matmul = P.MatMul()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
x = self.test_dynamic(x)
|
||
|
y = self.test_dynamic(y)
|
||
|
return self.matmul(x, y)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_MatMul_dynamic():
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
net = MatMul_d()
|
||
|
|
||
|
x1 = np.arange(2).reshape(1, 2).astype(np.float32)
|
||
|
y1 = np.arange(4).reshape(2, 2).astype(np.float32)
|
||
|
output1 = net(Tensor(x1), Tensor(y1))
|
||
|
expect1 = np.matmul(x1, y1)
|
||
|
np.testing.assert_array_almost_equal(output1.asnumpy(), expect1)
|
||
|
|
||
|
x2 = np.arange(102).reshape(34, 3).astype(np.float32)
|
||
|
y2 = np.arange(18).reshape(3, 6).astype(np.float32)
|
||
|
output2 = net(Tensor(x2), Tensor(y2))
|
||
|
expect2 = np.matmul(x2, y2)
|
||
|
np.testing.assert_array_almost_equal(output2.asnumpy(), expect2)
|