You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_matmul_op.py

55 lines
1.9 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class MatMul_d(nn.Cell):
def __init__(self):
super(MatMul_d, self).__init__()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.matmul = P.MatMul()
def construct(self, x, y):
x = self.test_dynamic(x)
y = self.test_dynamic(y)
return self.matmul(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_MatMul_dynamic():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = MatMul_d()
x1 = np.arange(2).reshape(1, 2).astype(np.float32)
y1 = np.arange(4).reshape(2, 2).astype(np.float32)
output1 = net(Tensor(x1), Tensor(y1))
expect1 = np.matmul(x1, y1)
np.testing.assert_array_almost_equal(output1.asnumpy(), expect1)
x2 = np.arange(102).reshape(34, 3).astype(np.float32)
y2 = np.arange(18).reshape(3, 6).astype(np.float32)
output2 = net(Tensor(x2), Tensor(y2))
expect2 = np.matmul(x2, y2)
np.testing.assert_array_almost_equal(output2.asnumpy(), expect2)