|
|
|
|
# MindSpore Lite 端侧图像分割demo(Android)
|
|
|
|
|
|
|
|
|
|
本示例程序演示了如何在端侧利用MindSpore Lite Java API 以及MindSpore Lite 图像分割模型完成端侧推理,实现对设备摄像头捕获的内容进行分割,并在App图像预览界面中显示出最可能的分割结果。
|
|
|
|
|
|
|
|
|
|
## 运行依赖
|
|
|
|
|
|
|
|
|
|
- Android Studio >= 3.2 (推荐4.0以上版本)
|
|
|
|
|
|
|
|
|
|
## 构建与运行
|
|
|
|
|
|
|
|
|
|
1. 在Android Studio中加载本示例源码。
|
|
|
|
|
|
|
|
|
|
![start_home](images/home.png)
|
|
|
|
|
|
|
|
|
|
启动Android Studio后,点击`File->Settings->System Settings->Android SDK`,勾选相应的`SDK Tools`。如下图所示,勾选后,点击`OK`,Android Studio即可自动安装SDK。
|
|
|
|
|
|
|
|
|
|
![start_sdk](images/sdk_management.jpg)
|
|
|
|
|
|
|
|
|
|
> Android SDK Tools为默认安装项,取消`Hide Obsolete Packages`选框之后可看到。
|
|
|
|
|
>
|
|
|
|
|
> 使用过程中若出现问题,可参考第4项解决。
|
|
|
|
|
|
|
|
|
|
2. 连接Android设备,运行该应用程序。
|
|
|
|
|
|
|
|
|
|
通过USB连接Android手机。待成功识别到设备后,点击`Run 'app'`即可在您的手机上运行本示例项目。
|
|
|
|
|
|
|
|
|
|
> 编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
|
|
|
|
|
>
|
|
|
|
|
> Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
|
|
|
|
|
>
|
|
|
|
|
> 手机需开启“USB调试模式”,Android Studio 才能识别到手机。 华为手机一般在设置->系统和更新->开发人员选项->USB调试中开始“USB调试模型”。
|
|
|
|
|
|
|
|
|
|
![run_app](images/run_app.PNG)
|
|
|
|
|
|
|
|
|
|
3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
|
|
|
|
|
|
|
|
|
|
![install](images/install.jpg)
|
|
|
|
|
|
|
|
|
|
如下图所示,识别出的概率最高的物体是植物。
|
|
|
|
|
|
|
|
|
|
![result](images/app_result.jpg)
|
|
|
|
|
|
|
|
|
|
4. Demo部署问题解决方案。
|
|
|
|
|
|
|
|
|
|
4.1 NDK、CMake、JDK等工具问题:
|
|
|
|
|
|
|
|
|
|
如果Android Studio内安装的工具出现无法识别等问题,可重新从相应官网下载和安装,并配置路径。
|
|
|
|
|
|
|
|
|
|
- NDK >= 21.3 [NDK](https://developer.android.google.cn/ndk/downloads?hl=zh-cn)
|
|
|
|
|
- CMake >= 3.10.2 [CMake](https://cmake.org/download)
|
|
|
|
|
- Android SDK >= 26 [SDK](https://developer.microsoft.com/zh-cn/windows/downloads/windows-10-sdk/)
|
|
|
|
|
- JDK >= 1.8 [JDK](https://www.oracle.com/cn/java/technologies/javase/javase-jdk8-downloads.html)
|
|
|
|
|
|
|
|
|
|
![project_structure](images/project_structure.png)
|
|
|
|
|
|
|
|
|
|
4.2 NDK版本不匹配问题:
|
|
|
|
|
|
|
|
|
|
打开`Android SDK`,点击`Show Package Details`,根据报错信息选择安装合适的NDK版本。
|
|
|
|
|
![NDK_version](images/NDK_version.jpg)
|
|
|
|
|
|
|
|
|
|
4.3 Android Studio版本问题:
|
|
|
|
|
|
|
|
|
|
在`工具栏-help-Checkout for Updates`中更新Android Studio版本。
|
|
|
|
|
|
|
|
|
|
4.4 Gradle下依赖项安装过慢问题:
|
|
|
|
|
|
|
|
|
|
如图所示, 打开Demo根目录下`build.gradle`文件,加入华为镜像源地址:`maven {url 'https://developer.huawei.com/repo/'}`,修改classpath为4.0.0,点击`sync`进行同步。下载完成后,将classpath版本复原,再次进行同步。
|
|
|
|
|
![maven](images/maven.jpg)
|
|
|
|
|
|
|
|
|
|
## 示例程序详细说明
|
|
|
|
|
|
|
|
|
|
本端侧图像分割Android示例程序使用Java实现,Java层主要通过Android Camera 2 API实现摄像头获取图像帧,进行相应的图像处理,之后调用Java API 完成模型推理。
|
|
|
|
|
|
|
|
|
|
> 此处详细说明示例程序的Java层图像处理及模型推理实现,Java层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。
|
|
|
|
|
|
|
|
|
|
### 示例程序结构
|
|
|
|
|
|
|
|
|
|
```text
|
|
|
|
|
app
|
|
|
|
|
├── src/main
|
|
|
|
|
│ ├── assets # 资源文件
|
|
|
|
|
| | └── deeplabv3.ms # 存放模型文件
|
|
|
|
|
│ |
|
|
|
|
|
│ ├── java # java层应用代码
|
|
|
|
|
│ │ └── com.mindspore.imagesegmentation
|
|
|
|
|
│ │ ├── help # 图像处理及MindSpore Java调用相关实现
|
|
|
|
|
│ │ │ └── ImageUtils # 图像预处理
|
|
|
|
|
│ │ │ └── ModelTrackingResult # 推理数据后处理
|
|
|
|
|
│ │ │ └── TrackingMobile # 模型加载、构建计算图和推理
|
|
|
|
|
│ │ └── BitmapUtils # 图像处理
|
|
|
|
|
│ │ └── MainActivity # 交互主页面
|
|
|
|
|
│ │ └── OnBackgroundImageListener # 获取相册图像
|
|
|
|
|
│ │ └── StyleRecycleViewAdapter # 获取相册图像
|
|
|
|
|
│ │
|
|
|
|
|
│ ├── res # 存放Android相关的资源文件
|
|
|
|
|
│ └── AndroidManifest.xml # Android配置文件
|
|
|
|
|
│
|
|
|
|
|
├── CMakeList.txt # cmake编译入口文件
|
|
|
|
|
│
|
|
|
|
|
├── build.gradle # 其他Android配置文件
|
|
|
|
|
├── download.gradle # 工程依赖文件下载
|
|
|
|
|
└── ...
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 配置MindSpore Lite依赖项
|
|
|
|
|
|
|
|
|
|
Android 调用MindSpore Java API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/build.html)生成`mindspore-lite-{version}-minddata-{os}-{device}.tar.gz`库文件包并解压缩(包含`libmindspore-lite.so`库文件和相关头文件),在本例中需使用生成带图像预处理模块的编译命令。
|
|
|
|
|
|
|
|
|
|
> version:输出件版本号,与所编译的分支代码对应的版本一致。
|
|
|
|
|
>
|
|
|
|
|
> device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。
|
|
|
|
|
>
|
|
|
|
|
> os:输出件应部署的操作系统。
|
|
|
|
|
|
|
|
|
|
本示例中,build过程由download.gradle文件自动下载MindSpore Lite 版本文件,并放置在`app/src/main/cpp/`目录下。
|
|
|
|
|
|
|
|
|
|
> 若自动下载失败,请手动下载相关库文件,解压并放在对应位置:
|
|
|
|
|
|
|
|
|
|
mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz [下载链接](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/lite/android_aarch64/mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz)
|
|
|
|
|
|
|
|
|
|
在app的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`的编译支持,如下所示:
|
|
|
|
|
|
|
|
|
|
```text
|
|
|
|
|
android{
|
|
|
|
|
defaultConfig{
|
|
|
|
|
externalNativeBuild{
|
|
|
|
|
cmake{
|
|
|
|
|
arguments "-DANDROID_STL=c++_shared"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ndk{
|
|
|
|
|
abiFilters 'arm64-v8a'
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。
|
|
|
|
|
|
|
|
|
|
```text
|
|
|
|
|
# ============== Set MindSpore Dependencies. =============
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include)
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype)
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema)
|
|
|
|
|
|
|
|
|
|
add_library(mindspore-lite SHARED IMPORTED )
|
|
|
|
|
add_library(minddata-lite SHARED IMPORTED )
|
|
|
|
|
|
|
|
|
|
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
|
|
|
|
|
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
|
|
|
|
|
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
|
|
|
|
|
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
|
|
|
|
|
# --------------- MindSpore Lite set End. --------------------
|
|
|
|
|
|
|
|
|
|
# Link target library.
|
|
|
|
|
target_link_libraries(
|
|
|
|
|
...
|
|
|
|
|
# --- mindspore ---
|
|
|
|
|
minddata-lite
|
|
|
|
|
mindspore-lite
|
|
|
|
|
...
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 下载及部署模型文件
|
|
|
|
|
|
|
|
|
|
从MindSpore Model Hub中下载模型文件,本示例程序中使用的终端图像分割模型文件为`deeplabv3.ms`,同样通过download.gradle脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。
|
|
|
|
|
|
|
|
|
|
> 若下载失败请手动下载模型文件,deeplabv3.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/deeplabv3_lite/deeplabv3.ms)。
|
|
|
|
|
|
|
|
|
|
### 编写端侧推理代码
|
|
|
|
|
|
|
|
|
|
调用MindSpore Lite Java API实现端测推理。
|
|
|
|
|
|
|
|
|
|
推理代码流程如下,完整代码请参见`src/java/TrackingMobile.java`。
|
|
|
|
|
|
|
|
|
|
1. 加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。
|
|
|
|
|
|
|
|
|
|
- 加载模型文件:创建并配置用于模型推理的上下文
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
// Create context and load the .ms model named 'IMAGESEGMENTATIONMODEL'
|
|
|
|
|
model = new Model();
|
|
|
|
|
if (!model.loadModel(Context, IMAGESEGMENTATIONMODEL)) {
|
|
|
|
|
Log.e(TAG, "Load Model failed");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 创建会话
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
// Create and init config.
|
|
|
|
|
msConfig = new MSConfig();
|
|
|
|
|
if (!msConfig.init(DeviceType.DT_CPU, 2, CpuBindMode.MID_CPU)) {
|
|
|
|
|
Log.e(TAG, "Init context failed");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Create the MindSpore lite session.
|
|
|
|
|
session = new LiteSession();
|
|
|
|
|
if (!session.init(msConfig)) {
|
|
|
|
|
Log.e(TAG, "Create session failed");
|
|
|
|
|
msConfig.free();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
msConfig.free();
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 构建计算图
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
if (!session.compileGraph(model)) {
|
|
|
|
|
Log.e(TAG, "Compile graph failed");
|
|
|
|
|
model.freeBuffer();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
// Note: when use model.freeBuffer(), the model can not be compile graph again.
|
|
|
|
|
model.freeBuffer();
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 将输入图片转换为传入MindSpore模型的Tensor格式。
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
List<MSTensor> inputs = session.getInputs();
|
|
|
|
|
if (inputs.size() != 1) {
|
|
|
|
|
Log.e(TAG, "inputs.size() != 1");
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// `bitmap` is the picture used to infer.
|
|
|
|
|
float resource_height = bitmap.getHeight();
|
|
|
|
|
float resource_weight = bitmap.getWidth();
|
|
|
|
|
ByteBuffer contentArray = bitmapToByteBuffer(bitmap, imageSize, imageSize, IMAGE_MEAN, IMAGE_STD);
|
|
|
|
|
|
|
|
|
|
MSTensor inTensor = inputs.get(0);
|
|
|
|
|
inTensor.setData(contentArray);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
3. 对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。
|
|
|
|
|
|
|
|
|
|
- 图执行,端侧推理。
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
// After the model and image tensor data is loaded, run inference.
|
|
|
|
|
if (!session.runGraph()) {
|
|
|
|
|
Log.e(TAG, "Run graph failed");
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 获取输出数据。
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
// Get output tensor values, the model only outputs one tensor.
|
|
|
|
|
List<String> tensorNames = session.getOutputTensorNames();
|
|
|
|
|
MSTensor output = session.getOutputByTensorName(tensorNames.front());
|
|
|
|
|
if (output == null) {
|
|
|
|
|
Log.e(TAG, "Can not find output " + tensorName);
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 输出数据的后续处理。
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
// Show output as pictures.
|
|
|
|
|
float[] results = output.getFloatData();
|
|
|
|
|
|
|
|
|
|
ByteBuffer bytebuffer_results = floatArrayToByteArray(results);
|
|
|
|
|
|
|
|
|
|
Bitmap dstBitmap = convertBytebufferMaskToBitmap(bytebuffer_results, imageSize, imageSize, bitmap, dstBitmap, segmentColors);
|
|
|
|
|
dstBitmap = scaleBitmapAndKeepRatio(dstBitmap, (int) resource_height, (int) resource_weight);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
4. 图片处理及输出数据后处理请参考如下代码。
|
|
|
|
|
|
|
|
|
|
```Java
|
|
|
|
|
Bitmap scaleBitmapAndKeepRatio(Bitmap targetBmp, int reqHeightInPixels, int reqWidthInPixels) {
|
|
|
|
|
if (targetBmp.getHeight() == reqHeightInPixels && targetBmp.getWidth() == reqWidthInPixels) {
|
|
|
|
|
return targetBmp;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Matrix matrix = new Matrix();
|
|
|
|
|
matrix.setRectToRect(new RectF(0f, 0f, targetBmp.getWidth(), targetBmp.getHeight()),
|
|
|
|
|
new RectF(0f, 0f, reqWidthInPixels, reqHeightInPixels), Matrix.ScaleToFit.FILL;
|
|
|
|
|
|
|
|
|
|
return Bitmap.createBitmap(targetBmp, 0, 0, targetBmp.getWidth(), targetBmp.getHeight(), matrix, true);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ByteBuffer bitmapToByteBuffer(Bitmap bitmapIn, int width, int height, float mean, float std) {
|
|
|
|
|
Bitmap bitmap = scaleBitmapAndKeepRatio(bitmapIn, width, height);
|
|
|
|
|
ByteBuffer inputImage = ByteBuffer.allocateDirect(1 * width * height * 3 * 4);
|
|
|
|
|
inputImage.order(ByteOrder.nativeOrder());
|
|
|
|
|
inputImage.rewind();
|
|
|
|
|
int[] intValues = new int[width * height];
|
|
|
|
|
bitmap.getPixels(intValues, 0, width, 0, 0, width, height);
|
|
|
|
|
int pixel = 0;
|
|
|
|
|
for (int y = 0; y < height; y++) {
|
|
|
|
|
for (int x = 0; x < width; x++) {
|
|
|
|
|
int value = intValues[pixel++];
|
|
|
|
|
inputImage.putFloat(((float) (value >> 16 & 255) - mean) / std);
|
|
|
|
|
inputImage.putFloat(((float) (value >> 8 & 255) - mean) / std);
|
|
|
|
|
inputImage.putFloat(((float) (value & 255) - mean) / std);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
inputImage.rewind();
|
|
|
|
|
return inputImage;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ByteBuffer floatArrayToByteArray(float[] floats) {
|
|
|
|
|
ByteBuffer buffer = ByteBuffer.allocate(4 * floats.length);
|
|
|
|
|
FloatBuffer floatBuffer = buffer.asFloatBuffer();
|
|
|
|
|
floatBuffer.put(floats);
|
|
|
|
|
return buffer;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Bitmap convertBytebufferMaskToBitmap(ByteBuffer inputBuffer, int imageWidth, int imageHeight, Bitmap backgroundImage, int[] colors) {
|
|
|
|
|
Bitmap.Config conf = Bitmap.Config.ARGB_8888;
|
|
|
|
|
Bitmap dstBitmap = Bitmap.createBitmap(imageWidth, imageHeight, conf);
|
|
|
|
|
Bitmap scaledBackgroundImage = scaleBitmapAndKeepRatio(backgroundImage, imageWidth, imageHeight);
|
|
|
|
|
int[][] mSegmentBits = new int[imageWidth][imageHeight];
|
|
|
|
|
inputBuffer.rewind();
|
|
|
|
|
for (int y = 0; y < imageHeight; y++) {
|
|
|
|
|
for (int x = 0; x < imageWidth; x++) {
|
|
|
|
|
float maxVal = 0f;
|
|
|
|
|
mSegmentBits[x][y] = 0;
|
|
|
|
|
// NUM_CLASSES is the number of labels, the value here is 21.
|
|
|
|
|
for (int i = 0; i < NUM_CLASSES; i++) {
|
|
|
|
|
float value = inputBuffer.getFloat((y * imageWidth * NUM_CLASSES + x * NUM_CLASSES + i) * 4);
|
|
|
|
|
if (i == 0 || value > maxVal) {
|
|
|
|
|
maxVal = value;
|
|
|
|
|
// Check whether a pixel belongs to a person whose label is 15.
|
|
|
|
|
if (i == 15) {
|
|
|
|
|
mSegmentBits[x][y] = i;
|
|
|
|
|
} else {
|
|
|
|
|
mSegmentBits[x][y] = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
itemsFound.add(mSegmentBits[x][y]);
|
|
|
|
|
|
|
|
|
|
int newPixelColor = ColorUtils.compositeColors(
|
|
|
|
|
colors[mSegmentBits[x][y] == 0 ? 0 : 1],
|
|
|
|
|
scaledBackgroundImage.getPixel(x, y)
|
|
|
|
|
);
|
|
|
|
|
dstBitmap.setPixel(x, y, mSegmentBits[x][y] == 0 ? colors[0] : scaledBackgroundImage.getPixel(x, y));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dstBitmap;
|
|
|
|
|
}
|
|
|
|
|
```
|