You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/yolov3_darknet53/README.md

133 lines
4.5 KiB

# YOLOV3-DarkNet53 Example
## Description
This is an example of training YOLOV3-DarkNet53 with COCO2014 dataset in MindSpore.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the dataset COCO2014.
> Unzip the COCO2014 dataset to any path you want, the folder should include train and eval dataset as follows:
```
.
└─dataset
├─train2014
├─val2014
└─annotations
```
## Structure
```shell
.
└─yolov3_darknet53
├─README.md
├─scripts
├─run_standalone_train.sh # launch standalone training(1p)
├─run_distribute_train.sh # launch distributed training(8p)
└─run_eval.sh # launch evaluating
├─src
├─config.py # parameter configuration
├─darknet.py # backbone of network
├─distributed_sampler.py # iterator of dataset
├─initializer.py # initializer of parameters
├─logger.py # log function
├─loss.py # loss function
├─lr_scheduler.py # generate learning rate
├─transforms.py # Preprocess data
├─util.py # util function
├─yolo.py # yolov3 network
├─yolo_dataset.py # create dataset for YOLOV3
├─eval.py # eval net
└─train.py # train net
```
## Running the example
### Train
#### Usage
```
# distributed training
sh run_distribute_train.sh [DATASET_PATH] [PRETRAINED_BACKBONE] [MINDSPORE_HCCL_CONFIG_PATH]
# standalone training
sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_BACKBONE]
```
#### Launch
```bash
# distributed training example(8p)
sh run_distribute_train.sh dataset/coco2014 backbone/backbone.ckpt rank_table_8p.json
# standalone training example(1p)
sh run_standalone_train.sh dataset/coco2014 backbone/backbone.ckpt
```
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
#### Result
Training result will be stored in the scripts path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log.txt.
```
# distribute training result(8p)
epoch[0], iter[0], loss:14623.384766, 1.23 imgs/sec, lr:7.812499825377017e-05
epoch[0], iter[100], loss:1486.253051, 15.01 imgs/sec, lr:0.007890624925494194
epoch[0], iter[200], loss:288.579535, 490.41 imgs/sec, lr:0.015703124925494194
epoch[0], iter[300], loss:153.136754, 531.99 imgs/sec, lr:0.023515624925494194
epoch[1], iter[400], loss:106.429322, 405.14 imgs/sec, lr:0.03132812678813934
...
epoch[318], iter[102000], loss:34.135306, 431.06 imgs/sec, lr:9.63797629083274e-06
epoch[319], iter[102100], loss:35.652469, 449.52 imgs/sec, lr:2.409552052995423e-06
epoch[319], iter[102200], loss:34.652273, 384.02 imgs/sec, lr:2.409552052995423e-06
epoch[319], iter[102300], loss:35.430038, 423.49 imgs/sec, lr:2.409552052995423e-06
...
```
### Infer
#### Usage
```
# infer
sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]
```
#### Launch
```bash
# infer with checkpoint
sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
```
> checkpoint can be produced in training process.
#### Result
Inference result will be stored in the scripts path, whose folder name is "eval". Under this, you can find result like the followings in log.txt.
```
=============coco eval reulst=========
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.311
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.528
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.322
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.323
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.428
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.259
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.423
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.442
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
```