You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/networks/test_gpu_lenet.py

93 lines
3.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Dense
from mindspore.common.initializer import initializer
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class LeNet(nn.Cell):
def __init__(self):
super(LeNet, self).__init__()
self.relu = P.ReLU()
self.batch_size = 1
weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
self.reshape = P.Reshape()
self.reshape1 = P.Reshape()
self.fc1 = Dense(400, 120)
self.fc2 = Dense(120, 84)
self.fc3 = Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.reshape(output, (self.batch_size, -1))
output = self.fc1(output)
output = self.fc2(output)
output = self.fc3(output)
return output
def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
lr = []
for step in range(total_steps):
lr_ = base_lr * gamma ** (step//gap)
lr.append(lr_)
return Tensor(np.array(lr), dtype)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_lenet():
epoch = 100
net = LeNet()
momentum = initializer(Tensor(np.array([0.9]).astype(np.float32)), [1])
learning_rate = multisteplr(epoch, 30)
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train()
losses = []
for i in range(epoch):
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
loss = train_network(data, label)
losses.append(loss)
print(losses)