|
|
|
|
# 映射数据文件到对应的脚本源码
|
|
|
|
|
|
|
|
|
|
## 文档功能与适用场景
|
|
|
|
|
|
|
|
|
|
在MindSpore进行计算调试,怀疑遇到精度问题时可以选择dump文件进行对比。此时用户希望知道dump文件夹下的每个数据文件对应的Python源码。
|
|
|
|
|
本文的主要目的为指导用户使用该工具进行数据文件到python源码的映射。
|
|
|
|
|
此指导文档适合运行在 **Ascend硬件** 环境下的计算。
|
|
|
|
|
|
|
|
|
|
## 辅助工具使用
|
|
|
|
|
|
|
|
|
|
1. 使用脚本的3步操作:
|
|
|
|
|
- 用户在训练脚本里设置context.set_context(mode=context.GRAPH_MODE, save_graphs=True),进行图文件的保存。
|
|
|
|
|
- 用户开启dump数据功能,参考<https://www.mindspore.cn/tutorial/training/zh-CN/r1.1/advanced_use/custom_debugging_info.html#dump>
|
|
|
|
|
- 获取dump数据文件的op_num,然后通过辅助脚本进行解析。如数据文件:`Default--network-TrainOneStepCell--network-WithLossCell--_backbone-
|
|
|
|
|
ResNet--layer2-SequentialCell--0-ResidualBlock--conv2-Conv2d--Cast-op954_input_0_shape_128_128_3_3_kNumberTypeFloat32_DefaultFormat.bin`.
|
|
|
|
|
可观察到Cast-op954,说明该算子的op_num为op954, 如下图所示。
|
|
|
|
|
![image](./images/op_image.png)
|
|
|
|
|
脚本名: **[map_file_to_code.py](https://gitee.com/mindspore/mindspore/blob/master/scripts/map_dump_file_to_code/map_file_to_code.py)**; 执行方式:
|
|
|
|
|
|
|
|
|
|
```ruby
|
|
|
|
|
python3 map_file_to_code.py
|
|
|
|
|
--graph_path(-p) [the graph path, default is the current path](option)
|
|
|
|
|
--dump_op(-o) [Dump operator id, case insensitive, such as 'op954'.](required)
|
|
|
|
|
For example:
|
|
|
|
|
python3 map_file_to_code.py -p graph_path -o op954
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 解析效果
|
|
|
|
|
解析文件时通常有2种情况:
|
|
|
|
|
① 匹配时会显示出调用栈过程,需要用户在调用栈中查找自己的源码:
|
|
|
|
|
|
|
|
|
|
```ruby
|
|
|
|
|
[INFO] Start to map the dump file to source code.
|
|
|
|
|
[INFO] Find operation 'Cast'.
|
|
|
|
|
In file /data1/jzg/mindspore/mindspore/nn/layer/conv.py(253)/
|
|
|
|
|
output = self.conv2d(x, self.weight)
|
|
|
|
|
In file /data1/jzg/dump_to_code/resnet/scripts/train/src/resnet.py(166)/
|
|
|
|
|
out = self.conv2(out)
|
|
|
|
|
In file /data1/jzg/mindspore/mindspore/nn/layer/container.py(173)/
|
|
|
|
|
for cell in self.cell_list:
|
|
|
|
|
In file /data1/jzg/dump_to_code/resnet/scripts/train/src/resnet.py(323)/ # 用户代码行
|
|
|
|
|
c3 = self.layer2(c2)
|
|
|
|
|
In file /data1/jzg/mindspore/mindspore/train/amp.py(101)/
|
|
|
|
|
out = self._backbone(data)
|
|
|
|
|
In file /data1/jzg/mindspore/mindspore/nn/wrap/cell_wrapper.py(247)/
|
|
|
|
|
loss = self.network(*inputs)
|
|
|
|
|
In file /data1/jzg/mindspore/mindspore/train/dataset_helper.py(87)/
|
|
|
|
|
return self.network(*outputs)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
② 未匹配,在图中未找对应节点的调用栈:
|
|
|
|
|
|
|
|
|
|
```ruby
|
|
|
|
|
[INFO] Start to map the dump file to source code.
|
|
|
|
|
[WARNING] Cannot find cast's source code in ir file. # 未找到cast算子的信息
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
3. 手动代码查找
|
|
|
|
|
这里还会存在些特殊情况,需要用户进行自行查找。通过将dump的数据文件名中的'--'替换为'/'可获取到算子的full_name, 如下图所示:
|
|
|
|
|
![image](./images/replace_symbol.png)
|
|
|
|
|
input和output文件名shape后面的数据为对应算子的输入输出shape信息。然后利用算子的full_name和输入输出信息回到源码中进行对应代码的查找。
|
|
|
|
|
举个例子说明如何手动在代码中查找指定full_name和shape的算子,例如full_name为: `Default/network/network/aspp/aspp_pooling/ResizeNearestNeighbor`,输入的shape为[8, 256, 1, 1], dtype为float32。
|
|
|
|
|
可以观察到其scope为: `Default/network/network/aspp/aspp_pooling`,算子名为: `ResizeNearestNeighbor`。注意:scope中会存在Default、network自动填充,Default表示正向,network为网络名。
|
|
|
|
|
查看以下用户定义的代码,首先我们先分析scope: `Default/network/network/aspp/aspp_pooling`。由network/aspp可定位到算子的定义与调用处分别为26行与31行,继续由`network/aspp/aspp_pooling`,可以定位到定义与调用处分别为4行与8行,然后通过算子名`ResizeNearestNeighbor`可以定位至定义与调用处分别为16行与19行。最后若存在相同scope下存在相同的算子名时,需要通过输入的shape进行进一步判断。
|
|
|
|
|
|
|
|
|
|
```ruby
|
|
|
|
|
1 class ASPP(nn.Cell):
|
|
|
|
|
2 def __init__(self):
|
|
|
|
|
3 super(ASPP, self).__init__()
|
|
|
|
|
4 self.aspp_pooling = ASPPPooling()
|
|
|
|
|
5 self.drop = nn.Dropout(0.3)
|
|
|
|
|
6
|
|
|
|
|
7 def construct(self, x):
|
|
|
|
|
8 x = self.aspp_pooling(x)
|
|
|
|
|
9 x = self.drop(x)
|
|
|
|
|
10 return x
|
|
|
|
|
11
|
|
|
|
|
12 class ASPPPooling(nn.Cell):
|
|
|
|
|
13 def __init__(self):
|
|
|
|
|
14 super(ASPPPooling, self).__init__()
|
|
|
|
|
15 self.shape = P.Shape()
|
|
|
|
|
16 self.resizenearestneighbor = P.ResizeNearestNeighbor((size[2], size[3]), True)
|
|
|
|
|
17 def construct(self, x):
|
|
|
|
|
18 size = self.shape(x)
|
|
|
|
|
19 out = self.resizenearestneighbor(x)
|
|
|
|
|
20 return out
|
|
|
|
|
21
|
|
|
|
|
22 # 主结构
|
|
|
|
|
23 class DeepLabV3(nn.Cell):
|
|
|
|
|
24 def __init__(self, phase='train', num_classes=21, output_stride=16, freeze_bn=False):
|
|
|
|
|
25 super(DeepLabV3, self).__init__()
|
|
|
|
|
26 self.aspp = ASPP()
|
|
|
|
|
27 self.shape = P.Shape()
|
|
|
|
|
28
|
|
|
|
|
29 def construct(self, x):
|
|
|
|
|
30 size = self.shape(x)
|
|
|
|
|
31 out = self.aspp(x)
|
|
|
|
|
32 return out
|
|
|
|
|
```
|