You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/gnn/gcn/train.py

140 lines
5.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
GCN training script.
"""
4 years ago
import os
import time
import argparse
5 years ago
import ast
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
from sklearn import manifold
from mindspore import context
from mindspore import Tensor
4 years ago
from mindspore.train.serialization import save_checkpoint, load_checkpoint
from src.gcn import GCN
from src.metrics import LossAccuracyWrapper, TrainNetWrapper
from src.config import ConfigGCN
from src.dataset import get_adj_features_labels, get_mask
def t_SNE(out_feature, dim):
t_sne = manifold.TSNE(n_components=dim, init='pca', random_state=0)
return t_sne.fit_transform(out_feature)
def update_graph(i, data, scat, plot):
scat.set_offsets(data[i])
plt.title('t-SNE visualization of Epoch:{0}'.format(i))
return scat, plot
def train():
"""Train model."""
parser = argparse.ArgumentParser(description='GCN')
parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Dataset directory')
parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training')
parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation')
parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test')
5 years ago
parser.add_argument('--save_TSNE', type=ast.literal_eval, default=False, help='Whether to save t-SNE graph')
args_opt = parser.parse_args()
4 years ago
if not os.path.exists("ckpts"):
os.mkdir("ckpts")
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False)
config = ConfigGCN()
adj, feature, label_onehot, label = get_adj_features_labels(args_opt.data_dir)
nodes_num = label_onehot.shape[0]
train_mask = get_mask(nodes_num, 0, args_opt.train_nodes_num)
eval_mask = get_mask(nodes_num, args_opt.train_nodes_num, args_opt.train_nodes_num + args_opt.eval_nodes_num)
test_mask = get_mask(nodes_num, nodes_num - args_opt.test_nodes_num, nodes_num)
class_num = label_onehot.shape[1]
input_dim = feature.shape[1]
gcn_net = GCN(config, input_dim, class_num)
gcn_net.add_flags_recursive(fp16=True)
adj = Tensor(adj)
feature = Tensor(feature)
eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay)
train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config)
loss_list = []
if args_opt.save_TSNE:
out_feature = gcn_net()
tsne_result = t_SNE(out_feature.asnumpy(), 2)
graph_data = []
graph_data.append(tsne_result)
fig = plt.figure()
scat = plt.scatter(tsne_result[:, 0], tsne_result[:, 1], s=2, c=label, cmap='rainbow')
plt.title('t-SNE visualization of Epoch:0', fontsize='large', fontweight='bold', verticalalignment='center')
for epoch in range(config.epochs):
t = time.time()
train_net.set_train()
train_result = train_net(adj, feature)
train_loss = train_result[0].asnumpy()
train_accuracy = train_result[1].asnumpy()
eval_net.set_train(False)
eval_result = eval_net(adj, feature)
eval_loss = eval_result[0].asnumpy()
eval_accuracy = eval_result[1].asnumpy()
loss_list.append(eval_loss)
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss),
"train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss),
"val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t))
if args_opt.save_TSNE:
out_feature = gcn_net()
tsne_result = t_SNE(out_feature.asnumpy(), 2)
graph_data.append(tsne_result)
if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]):
print("Early stopping...")
break
4 years ago
save_checkpoint(gcn_net, "ckpts/gcn.ckpt")
gcn_net_test = GCN(config, input_dim, class_num)
4 years ago
load_checkpoint("ckpts/gcn.ckpt", net=gcn_net_test)
gcn_net_test.add_flags_recursive(fp16=True)
4 years ago
test_net = LossAccuracyWrapper(gcn_net_test, label_onehot, test_mask, config.weight_decay)
t_test = time.time()
test_net.set_train(False)
test_result = test_net(adj, feature)
test_loss = test_result[0].asnumpy()
test_accuracy = test_result[1].asnumpy()
print("Test set results:", "loss=", "{:.5f}".format(test_loss),
"accuracy=", "{:.5f}".format(test_accuracy), "time=", "{:.5f}".format(time.time() - t_test))
if args_opt.save_TSNE:
ani = animation.FuncAnimation(fig, update_graph, frames=range(config.epochs + 1), fargs=(graph_data, scat, plt))
ani.save('t-SNE_visualization.gif', writer='imagemagick')
if __name__ == '__main__':
train()