|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import time
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
from mindspore import context
|
|
|
|
from model_zoo.gnn.gcn.src.gcn import GCN
|
|
|
|
from model_zoo.gnn.gcn.src.metrics import LossAccuracyWrapper, TrainNetWrapper
|
|
|
|
from model_zoo.gnn.gcn.src.config import ConfigGCN
|
|
|
|
from model_zoo.gnn.gcn.src.dataset import get_adj_features_labels, get_mask
|
|
|
|
|
|
|
|
|
|
|
|
DATA_DIR = '/home/workspace/mindspore_dataset/cora/cora_mr/cora_mr'
|
|
|
|
TRAIN_NODE_NUM = 140
|
|
|
|
EVAL_NODE_NUM = 500
|
|
|
|
TEST_NODE_NUM = 1000
|
|
|
|
SEED = 20
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_gcn():
|
|
|
|
print("test_gcn begin")
|
|
|
|
np.random.seed(SEED)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
|
|
device_target="Ascend", save_graphs=False)
|
|
|
|
config = ConfigGCN()
|
|
|
|
config.dropout = 0.0
|
|
|
|
adj, feature, label_onehot, _ = get_adj_features_labels(DATA_DIR)
|
|
|
|
|
|
|
|
nodes_num = label_onehot.shape[0]
|
|
|
|
train_mask = get_mask(nodes_num, 0, TRAIN_NODE_NUM)
|
|
|
|
eval_mask = get_mask(nodes_num, TRAIN_NODE_NUM, TRAIN_NODE_NUM + EVAL_NODE_NUM)
|
|
|
|
test_mask = get_mask(nodes_num, nodes_num - TEST_NODE_NUM, nodes_num)
|
|
|
|
|
|
|
|
class_num = label_onehot.shape[1]
|
|
|
|
gcn_net = GCN(config, adj, feature, class_num)
|
|
|
|
gcn_net.add_flags_recursive(fp16=True)
|
|
|
|
|
|
|
|
eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay)
|
|
|
|
test_net = LossAccuracyWrapper(gcn_net, label_onehot, test_mask, config.weight_decay)
|
|
|
|
train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config)
|
|
|
|
|
|
|
|
loss_list = []
|
|
|
|
for epoch in range(config.epochs):
|
|
|
|
t = time.time()
|
|
|
|
|
|
|
|
train_net.set_train()
|
|
|
|
train_result = train_net()
|
|
|
|
train_loss = train_result[0].asnumpy()
|
|
|
|
train_accuracy = train_result[1].asnumpy()
|
|
|
|
|
|
|
|
eval_net.set_train(False)
|
|
|
|
eval_result = eval_net()
|
|
|
|
eval_loss = eval_result[0].asnumpy()
|
|
|
|
eval_accuracy = eval_result[1].asnumpy()
|
|
|
|
|
|
|
|
loss_list.append(eval_loss)
|
|
|
|
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss),
|
|
|
|
"train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss),
|
|
|
|
"val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t))
|
|
|
|
|
|
|
|
if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]):
|
|
|
|
print("Early stopping...")
|
|
|
|
break
|
|
|
|
|
|
|
|
test_net.set_train(False)
|
|
|
|
test_result = test_net()
|
|
|
|
test_loss = test_result[0].asnumpy()
|
|
|
|
test_accuracy = test_result[1].asnumpy()
|
|
|
|
print("Test set results:", "loss=", "{:.5f}".format(test_loss),
|
|
|
|
"accuracy=", "{:.5f}".format(test_accuracy))
|
|
|
|
assert test_accuracy > 0.812
|