You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_bool_grad.py

83 lines
2.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from mindspore import Tensor
import mindspore as ms
import numpy as np
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.parameter import Parameter
from tests.dataset_mock import MindData
from mindspore import context
from mindspore.train import Model, ParallelMode
from mindspore.nn.optim import Momentum
context.set_context(mode=context.GRAPH_MODE)
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class CommonNet(nn.Cell):
def __init__(self):
super(CommonNet, self).__init__()
self.weight = Parameter(Tensor(np.ones([256, 64]), dtype=ms.float32), name="mul_weight")
self.logicalnot = P.LogicalNot().set_strategy(((4,2),))
self.equal = P.Equal().set_strategy(((4,2),(4,2)))
def construct(self, x, label):
x = self.equal(x, self.weight)
x = self.logicalnot(x)
return x
def common_net():
epoch_size = 1
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
predict = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([32]), dtype=ms.int32)
dataset = Dataset(predict, label, 2)
net = CommonNet()
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, optimizer=optimizer)
model.train(epoch_size, dataset, dataset_sink_mode=False)
def test_bool_grad():
common_net()