You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pynative_mode/test_stop_gradient.py

381 lines
11 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_stop_gradient """
import pytest
import numpy as np
import mindspore.nn as nn
from mindspore import context
import mindspore.common.dtype as mstype
from mindspore import Parameter, ParameterTuple, Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops.functional import stop_gradient
from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.utils.bprop_util import bprop
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore import context
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
def stop_func(x, y):
""" stop_func"""
c = x*y
c_s = x + y
return c_s, c
def stop_test1(x, y):
""" stop_test1 """
c = x*y
c_s = stop_gradient(c)
return c_s
def stop_test2(x, y):
""" stop_test2 """
c = x*y
c_s = stop_gradient(c)
d = c_s+x*y
return d * y
def stop_test3(x, y):
""" stop_test3 """
x = x*y
z = stop_test1(x, y)
k = z * y
return k
def stop_test5(x, y):
""" stop_test3 """
x = x+y
o1, o2= stop_func(x, y)
c = stop_gradient(o1)
c = o2+c
return c
def stop_test4(x, y):
""" stop_test4 """
c = x + y
c_s = stop_gradient(c)
e = c + c_s
return e
def grad_stop_test(x, y):
""" grad_stop_test """
return C.grad_all(stop_test2)(x, y)
def grad_stop_test1(x, y):
""" grad_stop_test1 """
return C.grad_all(stop_test3)(x, y)
def test_stop():
""" test_stop """
print("test_stop:", grad_stop_test(1, 1))
def test_stop1():
""" test_stop1 """
print("test_stop1:", grad_stop_test1(2, 3))
def test_stop5():
""" test_stop1 """
print("test_stop5:", C.grad_all(stop_test5)(2, 3))
class GradWrap(nn.Cell):
""" GradWrap definition """
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
self.weights = ParameterTuple(network.get_parameters())
@ms_function
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
@non_graph_engine
def test_softmaxloss_grad():
""" test_softmaxloss_grad """
class NetWithLossClass(nn.Cell):
""" NetWithLossClass definition """
def __init__(self, network):
super(NetWithLossClass, self).__init__()
self.loss = nn.SoftmaxCrossEntropyWithLogits()
self.network = network
@ms_function
def construct(self, x, label):
predict = self.network(x)
return self.loss(predict, label)
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10])), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
self.fc = P.MatMul()
self.fc2 = nn.Dense(10, 10)
self.biasAdd = P.BiasAdd()
self.relu = nn.ReLU()
self.cast = P.Cast()
@ms_function
def construct(self, x):
x = self.fc(x, self.weight)
x = self.cast(x, mstype.float32)
x = self.relu(self.fc2(x))
x = self.fc2(x)
x = stop_gradient(x)
x = self.biasAdd(x, self.bias)
return x
net = GradWrap(NetWithLossClass(Net()))
predict = Tensor(np.ones([1, 64]))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
print("pynative run")
out = net(predict, label)
print("out:", out)
def test_stop_gradient_1():
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
@ms_function
def construct(self, x, y):
ret = x * y
ret = stop_gradient(ret)
return ret
dx, dy = bprop(Mul(), Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)), wrt=['inputs'])
expect = np.zeros([2, 2])
assert (dx.asnumpy() == expect).all()
assert (dy.asnumpy() == expect).all()
def test_stop_gradient_2():
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
@ms_function
def construct(self, x, y):
c = x * y
z = x * y
return c, z
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
self.mul = Mul()
@ms_function
def construct(self, x, y):
u = x + y
v = x - y
c, z = self.mul(u, v)
c = stop_gradient(c)
ret1 = c + x + y
ret2 = z + y + y
return ret1, ret2
dx = bprop(MulAdd(), Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
expect = np.array([[3.0, 3.0], [3.0, 3.0]])
assert (dx.asnumpy() == expect).all()
def test_stop_gradient_3():
class TupleGetItem(nn.Cell):
def __init__(self):
super(TupleGetItem, self).__init__()
@ms_function
def construct(self, x1, x2, x3, x4, x5):
z1 = x1 + x1
z2 = x1 * x2
t = (z1, z2, x3, x4, x5)
z2 = t[1]
z2 = stop_gradient(z2)
return z1, z2, x3, x4, x5
dx = bprop(TupleGetItem(),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
expect = np.array([[2.0, 2.0], [2.0, 2.0]])
assert (dx.asnumpy() == expect).all()
def test_stop_gradient_4():
def stop_test(x):
return stop_gradient(x)
assert C.grad_all(stop_test)(1) == (0,)
def test_stop_gradient_5():
def stop_test(x):
y = x + x
y = stop_gradient(y)
ret = x + y
return ret
assert C.grad_all(stop_test)(1) == (1,)
def test_stop_gradient_6():
def stop_test(x, y):
ret = x * y
ret = stop_gradient(ret)
return ret
assert C.grad_all(stop_test)(1, 3) == (0, 0)
class PrimWithMultiOutputs(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
"""init"""
def __call__(self, x, y):
"""Implement by vm mode."""
return x, y
def infer_shape(self, x_shape, y_shape):
return x_shape, y_shape
def infer_dtype(self, x_type, y_type):
return x_type, y_type
def get_bprop(self):
def bprop(x, y, out, dout):
return (dout[0], dout[1])
return bprop
def test_stop_gradient_7():
class PrimWithMultiOutputs_(nn.Cell):
def __init__(self):
super(PrimWithMultiOutputs_, self).__init__()
self.prim_with_multi_outputs = PrimWithMultiOutputs()
@ms_function
def construct(self, x1, x2):
x1, x2 = self.prim_with_multi_outputs(x1, x2)
x1 = stop_gradient(x1)
return x1, x2
dx, dy = bprop(PrimWithMultiOutputs_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)), wrt=['inputs'])
expect_dx = np.zeros([2])
expect_dy = np.ones([2])
assert (dx.asnumpy() == expect_dx).all()
assert (dy.asnumpy() == expect_dy).all()
def test_stop_gradient_8():
class PrimWithMultiOutputs_(nn.Cell):
def __init__(self):
super(PrimWithMultiOutputs_, self).__init__()
self.prim_with_multi_output = PrimWithMultiOutputs()
@ms_function
def construct(self, x1, x2):
x1, x2 = stop_gradient(self.prim_with_multi_output(x1, x2))
return x1, x2
dx, dy = bprop(PrimWithMultiOutputs_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)), wrt=['inputs'])
expect_dx = np.zeros([2])
expect_dy = np.zeros([2])
assert (dx.asnumpy() == expect_dx).all()
assert (dy.asnumpy() == expect_dy).all()
def test_stop_gradient_9():
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
@ms_function
def construct(self, x, y):
c = x * y
z = x * y
return c, z
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
self.mul = Mul()
@ms_function
def construct(self, x, y):
u = x + y
v = x - y
c, z = self.mul(u, v)
c1 = stop_gradient(c)
c2 = c
ret1 = c1 + x + y + c2
ret2 = z + y + y
return ret1, ret2
dx = bprop(MulAdd(), Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
expect = np.array([[5.0, 5.0], [5.0, 5.0]])
assert (dx.asnumpy() == expect).all()
class PrimWithNoBprop(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
"""init"""
def __call__(self, x, y):
"""Implement by vm mode."""
return x, y
def infer_shape(self, x_shape, y_shape):
return x_shape, y_shape
def infer_dtype(self, x_type, y_type):
return x_type, y_type
def test_stop_gradient_10():
class PrimWithNoBprop_(nn.Cell):
def __init__(self):
super(PrimWithNoBprop_, self).__init__()
self.prim_with_no_bprop = PrimWithNoBprop()
@ms_function
def construct(self, x, y):
x = x * y
x, y = self.prim_with_no_bprop(x, y)
x = stop_gradient(x)
y = stop_gradient(y)
return x, y
dx = bprop(PrimWithNoBprop_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
expect_dx = np.zeros([2])
assert (dx.asnumpy() == expect_dx).all()
def test_stop_gradient_11():
class PrimWithNoBprop_(nn.Cell):
def __init__(self):
super(PrimWithNoBprop_, self).__init__()
self.prim_with_no_bprop = PrimWithNoBprop()
@ms_function
def construct(self, x, y):
x, y = self.prim_with_no_bprop(x, y)
x = stop_gradient(x)
return x, y
with pytest.raises(RuntimeError):
bprop(PrimWithNoBprop_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
def test_stop_print():
class StopPrint(nn.Cell):
def __init__(self):
super(StopPrint, self).__init__()
self.printm = P.Print()
def construct(self, x, y):
self.printm("StopPrint", x)
self.printm(y)
return x, y
C.grad_all(StopPrint())(Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))