You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_random_rotation.py

154 lines
5.1 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomRotation op in DE
"""
import cv2
import matplotlib.pyplot as plt
import numpy as np
import mindspore.dataset as ds
5 years ago
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def visualize(a, mse, original):
"""
visualizes the image using DE op and enCV
"""
plt.subplot(141)
plt.imshow(original)
plt.title("Original image")
plt.subplot(142)
plt.imshow(a)
plt.title("DE random_crop_and_resize image")
plt.subplot(143)
plt.imshow(a - original)
plt.title("Difference image, mse : {}".format(mse))
plt.show()
def diff_mse(in1, in2):
mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean()
return mse * 100
def test_random_rotation_op():
"""
Test RandomRotation op
"""
logger.info("test_random_rotation_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
decode_op = c_vision.Decode()
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
random_rotation_op = c_vision.RandomRotation((90, 90), expand=True)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
if num_iter > 0:
break
rotation = item1["image"]
original = item2["image"]
logger.info("shape before rotate: {}".format(original.shape))
original = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
diff = rotation - original
mse = np.sum(np.power(diff, 2))
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
assert mse == 0
# Uncomment below line if you want to visualize images
# visualize(rotation, mse, original)
num_iter += 1
def test_random_rotation_expand():
"""
Test RandomRotation op
"""
logger.info("test_random_rotation_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
random_rotation_op = c_vision.RandomRotation((0, 90), expand=True)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
num_iter = 0
for item in data1.create_dict_iterator():
rotation = item["image"]
logger.info("shape after rotate: {}".format(rotation.shape))
num_iter += 1
def test_rotation_diff():
"""
Test Rotation op
"""
logger.info("test_random_rotation_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
rotation_op = c_vision.RandomRotation((45, 45), expand=True)
ctrans = [decode_op,
rotation_op
]
data1 = data1.map(input_columns=["image"], operations=ctrans)
# Second dataset
transforms = [
py_vision.Decode(),
py_vision.RandomRotation((45, 45), expand=True),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(transforms)
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
logger.info("shape of c_image: {}".format(c_image.shape))
logger.info("shape of py_image: {}".format(py_image.shape))
logger.info("dtype of c_image: {}".format(c_image.dtype))
logger.info("dtype of py_image: {}".format(py_image.dtype))
if __name__ == "__main__":
test_random_rotation_op()
test_random_rotation_expand()
test_rotation_diff()