You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
42 lines
1.8 KiB
42 lines
1.8 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""NAML export."""
|
||
|
import numpy as np
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.train.serialization import load_checkpoint, export
|
||
|
from src.naml import NAML, NAMLWithLossCell
|
||
|
from src.option import get_args
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
args = get_args("export")
|
||
|
net = NAML(args)
|
||
|
net.set_train(False)
|
||
|
net_with_loss = NAMLWithLossCell(net)
|
||
|
load_checkpoint(args.checkpoint_path, net_with_loss)
|
||
|
news_encoder = net.news_encoder
|
||
|
user_encoder = net.user_encoder
|
||
|
bs = args.batch_size
|
||
|
category = Tensor(np.zeros([bs, 1], np.int32))
|
||
|
subcategory = Tensor(np.zeros([bs, 1], np.int32))
|
||
|
title = Tensor(np.zeros([bs, args.n_words_title], np.int32))
|
||
|
abstract = Tensor(np.zeros([bs, args.n_words_abstract], np.int32))
|
||
|
|
||
|
news_input_data = [category, subcategory, title, abstract]
|
||
|
export(news_encoder, *news_input_data, file_name=f"naml_news_encoder_bs_{bs}", file_format=args.file_format)
|
||
|
|
||
|
browsed_news = Tensor(np.zeros([bs, args.n_browsed_news, args.n_filters], np.float32))
|
||
|
export(user_encoder, browsed_news, file_name=f"naml_user_encoder_bs_{bs}", file_format=args.file_format)
|