You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.1 KiB
124 lines
4.1 KiB
4 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""Train Mobilenetv2_quant on Cifar10"""
|
||
|
|
||
|
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
from easydict import EasyDict as ed
|
||
|
|
||
|
from mindspore import context
|
||
|
from mindspore import Tensor
|
||
|
from mindspore import nn
|
||
|
from mindspore.train.model import Model
|
||
|
from mindspore.train.quant import quant
|
||
|
from mindspore.common import set_seed
|
||
|
|
||
|
from dataset import create_dataset
|
||
|
from lr_generator import get_lr
|
||
|
from utils import Monitor, CrossEntropyWithLabelSmooth
|
||
|
from mobilenetV2 import mobilenetV2
|
||
|
|
||
|
config_ascend_quant = ed({
|
||
|
"num_classes": 10,
|
||
|
"image_height": 224,
|
||
|
"image_width": 224,
|
||
|
"batch_size": 200,
|
||
|
"step_threshold": 10,
|
||
|
"data_load_mode": "mindata",
|
||
|
"epoch_size": 1,
|
||
|
"start_epoch": 200,
|
||
|
"warmup_epochs": 1,
|
||
|
"lr": 0.3,
|
||
|
"momentum": 0.9,
|
||
|
"weight_decay": 4e-5,
|
||
|
"label_smooth": 0.1,
|
||
|
"loss_scale": 1024,
|
||
|
"save_checkpoint": True,
|
||
|
"save_checkpoint_epochs": 1,
|
||
|
"keep_checkpoint_max": 300,
|
||
|
"save_checkpoint_path": "./checkpoint",
|
||
|
"quantization_aware": True,
|
||
|
})
|
||
|
|
||
|
dataset_path = "/dataset/workspace/mindspore_dataset/cifar-10-batches-bin/"
|
||
|
|
||
|
|
||
|
@pytest.mark.level1
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def train_on_ascend():
|
||
|
set_seed(1)
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
|
config = config_ascend_quant
|
||
|
print("training configure: {}".format(config))
|
||
|
|
||
|
epoch_size = config.epoch_size
|
||
|
|
||
|
# define network
|
||
|
network = mobilenetV2(num_classes=config.num_classes)
|
||
|
# define loss
|
||
|
if config.label_smooth > 0:
|
||
|
loss = CrossEntropyWithLabelSmooth(
|
||
|
smooth_factor=config.label_smooth, num_classes=config.num_classes)
|
||
|
else:
|
||
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||
|
# define dataset
|
||
|
dataset = create_dataset(dataset_path=dataset_path,
|
||
|
config=config,
|
||
|
repeat_num=1,
|
||
|
batch_size=config.batch_size)
|
||
|
step_size = dataset.get_dataset_size()
|
||
|
|
||
|
# convert fusion network to quantization aware network
|
||
|
network = quant.convert_quant_network(network,
|
||
|
bn_fold=True,
|
||
|
per_channel=[True, False],
|
||
|
symmetric=[True, False])
|
||
|
|
||
|
# get learning rate
|
||
|
lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
|
||
|
lr_init=0,
|
||
|
lr_end=0,
|
||
|
lr_max=config.lr,
|
||
|
warmup_epochs=config.warmup_epochs,
|
||
|
total_epochs=epoch_size + config.start_epoch,
|
||
|
steps_per_epoch=step_size))
|
||
|
|
||
|
# define optimization
|
||
|
opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
|
||
|
config.weight_decay)
|
||
|
# define model
|
||
|
model = Model(network, loss_fn=loss, optimizer=opt)
|
||
|
|
||
|
print("============== Starting Training ==============")
|
||
|
monitor = Monitor(lr_init=lr.asnumpy(),
|
||
|
step_threshold=config.step_threshold)
|
||
|
callback = [monitor]
|
||
|
model.train(epoch_size, dataset, callbacks=callback,
|
||
|
dataset_sink_mode=False)
|
||
|
print("============== End Training ==============")
|
||
|
|
||
|
expect_avg_step_loss = 2.32
|
||
|
avg_step_loss = np.mean(np.array(monitor.losses))
|
||
|
|
||
|
print("average step loss:{}".format(avg_step_loss))
|
||
|
assert avg_step_loss < expect_avg_step_loss
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
train_on_ascend()
|