# Demo of Image Classification
The following describes how to use the MindSpore Lite C++ APIs (Android JNIs) and MindSpore Lite image classification models to perform on-device inference, classify the content captured by a device camera, and display the most possible classification result on the application's image preview screen.
### Running Dependencies
- Android Studio 3.2 or later (Android 4.0 or later is recommended.)
- Native development kit (NDK) 21.3
- CMake 3.10.2 [CMake ](https://cmake.org/download )
- Android software development kit (SDK) 26 or later
- JDK 1.8 or later
### Building and Running
1. Load the sample source code to Android Studio and install the corresponding SDK. (After the SDK version is specified, Android Studio automatically installs the SDK.)

Start Android Studio, click `File > Settings > System Settings > Android SDK` , and select the corresponding SDK. As shown in the following figure, select an SDK and click `OK` . Android Studio automatically installs the SDK.

(Optional) If an NDK version issue occurs during the installation, manually download the corresponding [NDK version ](https://developer.android.com/ndk/downloads ) (the version used in the sample code is 21.3). Specify the SDK location in `Android NDK location` of `Project Structure` .

2. Connect to an Android device and runs the image classification application.
Connect to the Android device through a USB cable for debugging. Click `Run 'app'` to run the sample project on your device.

For details about how to connect the Android Studio to a device for debugging, see < https: / / developer . android . com / studio / run / device ? hl = zh-cn > .
The mobile phone needs to be turn on "USB debugging mode" before Android Studio can recognize the mobile phone. Huawei mobile phones generally turn on "USB debugging model" in Settings > system and update > developer Options > USB debugging.
3. Continue the installation on the Android device. After the installation is complete, you can view the content captured by a camera and the inference result.

## Detailed Description of the Sample Program
This image classification sample program on the Android device includes a Java layer and a JNI layer. At the Java layer, the Android Camera 2 API is used to enable a camera to obtain image frames and process images. At the JNI layer, the model inference process is completed in [Runtime ](https://www.mindspore.cn/tutorial/lite/en/master/use/runtime.html ).
### Sample Program Structure
```
app
│
├── src/main
│ ├── assets # resource files
| | └── mobilenetv2.ms # model file
│ |
│ ├── cpp # main logic encapsulation classes for model loading and prediction
| | |
| | ├── MindSporeNetnative.cpp # JNI methods related to MindSpore calling
│ | └── MindSporeNetnative.h # header file
│ |
│ ├── java # application code at the Java layer
│ │ └── com.mindspore.himindsporedemo
│ │ ├── gallery.classify # implementation related to image processing and MindSpore JNI calling
│ │ │ └── ...
│ │ └── widget # implementation related to camera enabling and drawing
│ │ └── ...
│ │
│ ├── res # resource files related to Android
│ └── AndroidManifest.xml # Android configuration file
│
├── CMakeList.txt # CMake compilation entry file
│
├── build.gradle # Other Android configuration file
├── download.gradle # MindSpore version download
└── ...
```
### Configuring MindSpore Lite Dependencies
When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation ](https://www.mindspore.cn/tutorial/lite/en/master/use/build.html ) to generate the MindSpore Lite version. In this case, you need to use the compile command of generate with image preprocessing module.
In this example, the build process automatically downloads the `mindspore-lite-1.0.1-runtime-arm64-cpu` by the `app/download.gradle` file and saves in the `app/src/main/cpp` directory.
Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location.
mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz [Download link ](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/lite/android_aarch64/mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz )
```
android{
defaultConfig{
externalNativeBuild{
cmake{
arguments "-DANDROID_STL=c++_shared"
}
}
ndk{
abiFilters'armeabi-v7a', 'arm64-v8a'
}
}
}
```
Create a link to the `.so` library file in the `app/CMakeLists.txt` file:
```
# ============== Set MindSpore Dependencies. =============
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema)
add_library(mindspore-lite SHARED IMPORTED )
add_library(minddata-lite SHARED IMPORTED )
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
# --------------- MindSpore Lite set End. --------------------
# Link target library.
target_link_libraries(
...
# --- mindspore ---
minddata-lite
mindspore-lite
...
)
```
### Downloading and Deploying a Model File
In this example, the download.gradle File configuration auto download `mobilenetv2.ms ` and placed in the 'app/libs/arm64-v8a' directory.
Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location.
mobilenetv2.ms [mobilenetv2.ms ]( https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms )
### Compiling On-Device Inference Code
Call MindSpore Lite C++ APIs at the JNI layer to implement on-device inference.
The inference code process is as follows. For details about the complete code, see `src/cpp/MindSporeNetnative.cpp` .
1. Load the MindSpore Lite model file and build the context, session, and computational graph for inference.
- Load a model file. Create and configure the context for model inference.
```cpp
// Buffer is the model data passed in by the Java layer
jlong bufferLen = env->GetDirectBufferCapacity(buffer);
char *modelBuffer = CreateLocalModelBuffer(env, buffer);
```
- Create a session.
```cpp
void **labelEnv = new void *;
MSNetWork *labelNet = new MSNetWork;
*labelEnv = labelNet;
// Create context.
mindspore::lite::Context *context = new mindspore::lite::Context;
context->thread_num_ = num_thread;
// Create the mindspore session.
labelNet->CreateSessionMS(modelBuffer, bufferLen, "device label", context);
delete(context);
```
- Load the model file and build a computational graph for inference.
```cpp
void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, std::string name, mindspore::lite::Context* ctx)
{
CreateSession(modelBuffer, bufferLen, ctx);
session = mindspore::session::LiteSession::CreateSession(ctx);
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
int ret = session->CompileGraph(model);
}
```
2. Convert the input image into the Tensor format of the MindSpore model.
Convert the image data to be detected into the Tensor format of the MindSpore model.
```cpp
if (!BitmapToLiteMat(env, srcBitmap, & lite_mat_bgr)) {
MS_PRINT("BitmapToLiteMat error");
return NULL;
}
if (!PreProcessImageData(lite_mat_bgr, & lite_norm_mat_cut)) {
MS_PRINT("PreProcessImageData error");
return NULL;
}
ImgDims inputDims;
inputDims.channel = lite_norm_mat_cut.channel_;
inputDims.width = lite_norm_mat_cut.width_;
inputDims.height = lite_norm_mat_cut.height_;
// Get the mindsore inference environment which created in loadModel().
void **labelEnv = reinterpret_cast<void ** >(netEnv);
if (labelEnv == nullptr) {
MS_PRINT("MindSpore error, labelEnv is a nullptr.");
return NULL;
}
MSNetWork *labelNet = static_cast<MSNetWork * >(*labelEnv);
auto mSession = labelNet->session();
if (mSession == nullptr) {
MS_PRINT("MindSpore error, Session is a nullptr.");
return NULL;
}
MS_PRINT("MindSpore get session.");
auto msInputs = mSession->GetInputs();
if (msInputs.size() == 0) {
MS_PRINT("MindSpore error, msInputs.size() equals 0.");
return NULL;
}
auto inTensor = msInputs.front();
float *dataHWC = reinterpret_cast<float * >(lite_norm_mat_cut.data_ptr_);
// Copy dataHWC to the model input tensor.
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
```
3. Perform inference on the input tensor based on the model, obtain the output tensor, and perform post-processing.
- Perform graph execution and on-device inference.
```cpp
// After the model and image tensor data is loaded, run inference.
auto status = mSession->RunGraph();
```
- Obtain the output data.
```cpp
auto names = mSession->GetOutputTensorNames();
std::unordered_map< std::string , mindspore::tensor::MSTensor * > msOutputs;
for (const auto & name : names) {
auto temp_dat =mSession->GetOutputByTensorName(name);
msOutputs.insert(std::pair< std::string , mindspore::tensor::MSTensor * > {name, temp_dat});
}
std::string retStr = ProcessRunnetResult(msOutputs, ret);
```
- Perform post-processing of the output data.
```cpp
std::string ProcessRunnetResult(const int RET_CATEGORY_SUM, const char *const labels_name_map[],
std::unordered_map< std::string , mindspore::tensor::MSTensor * > msOutputs) {
// Get the branch of the model output.
// Use iterators to get map elements.
std::unordered_map< std::string , mindspore::tensor::MSTensor * > ::iterator iter;
iter = msOutputs.begin();
// The mobilenetv2.ms model output just one branch.
auto outputTensor = iter->second;
int tensorNum = outputTensor->ElementsNum();
MS_PRINT("Number of tensor elements:%d", tensorNum);
// Get a pointer to the first score.
float *temp_scores = static_cast<float * >(outputTensor->MutableData());
float scores[RET_CATEGORY_SUM];
for (int i = 0; i < RET_CATEGORY_SUM ; + + i ) {
scores[i] = temp_scores[i];
}
float unifiedThre = 0.5;
float probMax = 1.0;
for (size_t i = 0; i < RET_CATEGORY_SUM ; + + i ) {
float threshold = g_thres_map[i];
float tmpProb = scores[i];
if (tmpProb < threshold ) {
tmpProb = tmpProb / threshold * unifiedThre;
} else {
tmpProb = (tmpProb - threshold) / (probMax - threshold) * unifiedThre + unifiedThre;
}
scores[i] = tmpProb;
}
for (int i = 0; i < RET_CATEGORY_SUM ; + + i ) {
if (scores[i] > 0.5) {
MS_PRINT("MindSpore scores[%d] : [%f]", i, scores[i]);
}
}
// Score for each category.
// Converted to text information that needs to be displayed in the APP.
std::string categoryScore = "";
for (int i = 0; i < RET_CATEGORY_SUM ; + + i ) {
categoryScore += labels_name_map[i];
categoryScore += ":";
std::string score_str = std::to_string(scores[i]);
categoryScore += score_str;
categoryScore += ";";
}
return categoryScore;
}
```