You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_logical_op.py

99 lines
3.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
5 years ago
import numpy as np
import pytest
5 years ago
import mindspore.context as context
5 years ago
from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
class NetAnd(Cell):
def __init__(self):
super(NetAnd, self).__init__()
self.logicaland = P.LogicalAnd()
def construct(self, input_x, input_y):
return self.logicaland(input_x, input_y)
5 years ago
class NetOr(Cell):
def __init__(self):
super(NetOr, self).__init__()
self.logicalor = P.LogicalOr()
def construct(self, input_x, input_y):
return self.logicalor(input_x, input_y)
5 years ago
class NetNot(Cell):
def __init__(self):
super(NetNot, self).__init__()
self.logicalnot = P.LogicalNot()
def construct(self, input_x):
return self.logicalnot(input_x)
5 years ago
x = np.array([True, False, False]).astype(np.bool)
y = np.array([False]).astype(np.bool)
5 years ago
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_logicaland():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
logicaland = NetAnd()
output = logicaland(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == np.logical_and(x, y))
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
logicaland = NetAnd()
output = logicaland(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == np.logical_and(x, y))
5 years ago
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_logicalor():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
logicalor = NetOr()
output = logicalor(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == np.logical_or(x, y))
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
logicalor = NetOr()
output = logicalor(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == np.logical_or(x, y))
5 years ago
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_logicalnot():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
logicalnot = NetNot()
output = logicalnot(Tensor(x))
assert np.all(output.asnumpy() == np.logical_not(x))
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
logicalnot = NetNot()
output = logicalnot(Tensor(x))
assert np.all(output.asnumpy() == np.logical_not(x))