You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_rmsprop.py

203 lines
8.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
5 years ago
import numpy as np
import pytest
5 years ago
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
4 years ago
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class NetCenteredRMSProp(nn.Cell):
4 years ago
def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
super(NetCenteredRMSProp, self).__init__()
self.rms_opt = P.ApplyCenteredRMSProp()
self.lr = lr
self.decay = decay
self.momentum = momentum
self.epsilon = epsilon
4 years ago
self.var = var
self.g = g
self.mg = mg
self.rms = rms
self.mom = mom
4 years ago
def construct(self):
return self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum,
self.epsilon)
class NetRMSProp(nn.Cell):
4 years ago
def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
super(NetRMSProp, self).__init__()
self.lr = lr
self.decay = decay
self.momentum = momentum
self.epsilon = epsilon
4 years ago
self.var = var
self.g = g
self.mg = mg
self.rms = rms
self.mom = mom
self.rms_opt = P.ApplyRMSProp()
4 years ago
def construct(self):
return self.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon)
5 years ago
def rmsprop_numpy(variable, gradients, mean_square, moment,
learning_rate, decay, momentum, epsilon):
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
variable = variable - moment
return variable, gradients, mean_square, moment
5 years ago
def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
learning_rate, decay, momentum, epsilon):
mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
5 years ago
moment = momentum * moment + learning_rate / np.sqrt(
mean_square - mean_gradients * mean_gradients + epsilon) * gradients
variable = variable - moment
return variable, gradients, mean_gradients, mean_square, moment
4 years ago
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_rmsprop():
learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
variable_np = np.array([1.0, 2.0], dtype=np.float32)
gradients_np = np.array([0.1, 0.2], dtype=np.float32)
mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
moment_np = np.array([0.0, 0.0], dtype=np.float32)
4 years ago
variable = Tensor(variable_np)
gradients = Tensor(gradients_np)
mean_gradients = Tensor(mean_gradients_np)
mean_square = Tensor(mean_square_np)
moment = Tensor(moment_np)
variable_ms = Parameter(initializer(variable, variable.shape), name='var')
gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
if centered:
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
4 years ago
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
mean_square_ms, moment_ms)
_ = net()
else:
variable_np, gradients_np, mean_square_np, moment_np = \
4 years ago
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
mean_square_ms, moment_ms)
_ = net()
error = np.ones(shape=variable_np.shape) * 10e-6
diff = variable_ms.asnumpy() - variable_np
assert np.all(diff < error)
error = np.ones(shape=gradients_np.shape) * 10e-6
diff = gradients_ms.asnumpy() - gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_gradients_np.shape) * 10e-6
diff = mean_gradients_ms.asnumpy() - mean_gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_square_np.shape) * 10e-6
diff = mean_square_ms.asnumpy() - mean_square_np
assert np.all(diff < error)
error = np.ones(shape=moment_np.shape) * 10e-6
diff = moment_ms.asnumpy() - moment_np
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_rmspropcenter():
learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
variable_np = np.array([1.0, 2.0], dtype=np.float32)
gradients_np = np.array([0.1, 0.2], dtype=np.float32)
mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
moment_np = np.array([0.0, 0.0], dtype=np.float32)
4 years ago
variable = Tensor(variable_np)
gradients = Tensor(gradients_np)
mean_gradients = Tensor(mean_gradients_np)
mean_square = Tensor(mean_square_np)
moment = Tensor(moment_np)
variable_ms = Parameter(initializer(variable, variable.shape), name='var')
gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
if centered:
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
4 years ago
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
mean_square_ms, moment_ms)
_ = net()
else:
variable_np, gradients_np, mean_square_np, moment_np = \
4 years ago
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
mean_square_ms, moment_ms)
_ = net()
error = np.ones(shape=variable_np.shape) * 10e-6
diff = variable_ms.asnumpy() - variable_np
assert np.all(diff < error)
error = np.ones(shape=gradients_np.shape) * 10e-6
diff = gradients_ms.asnumpy() - gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_gradients_np.shape) * 10e-6
diff = mean_gradients_ms.asnumpy() - mean_gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_square_np.shape) * 10e-6
diff = mean_square_ms.asnumpy() - mean_square_np
assert np.all(diff < error)
error = np.ones(shape=moment_np.shape) * 10e-6
diff = moment_ms.asnumpy() - moment_np
5 years ago
assert np.all(diff < error)