You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
50 lines
2.2 KiB
50 lines
2.2 KiB
4 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""textrcnn export ckpt file to mindir/air"""
|
||
|
import os
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
|
||
|
|
||
|
from src.textrcnn import textrcnn
|
||
|
from src.config import textrcnn_cfg as config
|
||
|
|
||
|
parser = argparse.ArgumentParser(description="textrcnn")
|
||
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||
|
parser.add_argument("--ckpt_file", type=str, required=True, help="textrcnn ckpt file.")
|
||
|
parser.add_argument("--file_name", type=str, default="textrcnn", help="textrcnn output file name.")
|
||
|
parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"],
|
||
|
default="MINDIR", help="file format")
|
||
|
parser.add_argument("--device_target", type=str, choices=["Ascend"], default="Ascend",
|
||
|
help="device target")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# define net
|
||
|
embedding_table = np.loadtxt(os.path.join(config.preprocess_path, "weight.txt")).astype(np.float32)
|
||
|
|
||
|
net = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0],
|
||
|
cell=config.cell, batch_size=config.batch_size)
|
||
|
|
||
|
# load checkpoint
|
||
|
param_dict = load_checkpoint(args.ckpt_file)
|
||
|
load_param_into_net(net, param_dict)
|
||
|
net.set_train(False)
|
||
|
|
||
|
image = Tensor(np.ones([config.batch_size, 50], np.int32))
|
||
|
export(net, image, file_name=args.file_name, file_format=args.file_format)
|