You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/cnnctc/train.py

104 lines
4.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""cnnctc train"""
import argparse
import ast
import mindspore
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.dataset import GeneratorDataset
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.model import Model
from mindspore.communication.management import init
from mindspore.common import set_seed
from src.config import Config_CNNCTC
from src.callback import LossCallBack
from src.dataset import ST_MJ_Generator_batch_fixed_length, ST_MJ_Generator_batch_fixed_length_para
from src.cnn_ctc import CNNCTC_Model, ctc_loss, WithLossCell
set_seed(1)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
save_graphs_path=".", enable_auto_mixed_precision=False)
def dataset_creator(run_distribute):
if run_distribute:
st_dataset = ST_MJ_Generator_batch_fixed_length_para()
else:
st_dataset = ST_MJ_Generator_batch_fixed_length()
ds = GeneratorDataset(st_dataset,
['img', 'label_indices', 'text', 'sequence_length'],
num_parallel_workers=8)
return ds
def train(args_opt, config):
if args_opt.run_distribute:
init()
context.set_auto_parallel_context(parallel_mode="data_parallel")
ds = dataset_creator(args_opt.run_distribute)
net = CNNCTC_Model(config.NUM_CLASS, config.HIDDEN_SIZE, config.FINAL_FEATURE_WIDTH)
net.set_train(True)
if config.CKPT_PATH != '':
param_dict = load_checkpoint(config.CKPT_PATH)
load_param_into_net(net, param_dict)
print('parameters loaded!')
else:
print('train from scratch...')
criterion = ctc_loss()
opt = mindspore.nn.RMSProp(params=net.trainable_params(), centered=True, learning_rate=config.LR_PARA,
momentum=config.MOMENTUM, loss_scale=config.LOSS_SCALE)
net = WithLossCell(net, criterion)
loss_scale_manager = mindspore.train.loss_scale_manager.FixedLossScaleManager(config.LOSS_SCALE, False)
model = Model(net, optimizer=opt, loss_scale_manager=loss_scale_manager, amp_level="O2")
callback = LossCallBack()
config_ck = CheckpointConfig(save_checkpoint_steps=config.SAVE_CKPT_PER_N_STEP,
keep_checkpoint_max=config.KEEP_CKPT_MAX_NUM)
ckpoint_cb = ModelCheckpoint(prefix="CNNCTC", config=config_ck, directory=config.SAVE_PATH)
if args_opt.run_distribute:
if args_opt.device_id == 0:
model.train(config.TRAIN_EPOCHS, ds, callbacks=[callback, ckpoint_cb], dataset_sink_mode=False)
else:
model.train(config.TRAIN_EPOCHS, ds, callbacks=[callback], dataset_sink_mode=False)
else:
model.train(config.TRAIN_EPOCHS, ds, callbacks=[callback, ckpoint_cb], dataset_sink_mode=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CNNCTC arg')
parser.add_argument('--device_id', type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--ckpt_path", type=str, default="", help="Pretrain file path.")
parser.add_argument("--run_distribute", type=ast.literal_eval, default=False,
help="Run distribute, default is false.")
args_cfg = parser.parse_args()
cfg = Config_CNNCTC()
if args_cfg.ckpt_path != "":
cfg.CKPT_PATH = args_cfg.ckpt_path
train(args_cfg, cfg)