|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
""" export model for CRNN """
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
|
|
from mindspore import Tensor, context, load_checkpoint, export
|
|
|
|
|
|
|
|
from src.crnn import crnn
|
|
|
|
from src.config import config1 as config
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="CRNN_export")
|
|
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
|
|
|
parser.add_argument("--file_name", type=str, default="crnn", help="output file name.")
|
|
|
|
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
|
|
|
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
|
|
|
help="device target")
|
|
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
|
|
if args.device_target == "Ascend":
|
|
|
|
context.set_context(device_id=args.device_id)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
config.batch_size = 1
|
|
|
|
net = crnn(config)
|
|
|
|
|
|
|
|
load_checkpoint(args.ckpt_file, net=net)
|
|
|
|
net.set_train(False)
|
|
|
|
|
|
|
|
input_data = Tensor(np.zeros([1, 3, config.image_height, config.image_width]), ms.float32)
|
|
|
|
|
|
|
|
export(net, input_data, file_name=args.file_name, file_format=args.file_format)
|