You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/inceptionv4/train.py

186 lines
7.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train imagenet"""
import os
import argparse
import math
import numpy as np
from mindspore.communication import init, get_rank
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
from mindspore.train.model import ParallelMode
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore import Model
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn import RMSProp
from mindspore import Tensor
from mindspore import context
from mindspore.common import set_seed
from mindspore.common.initializer import XavierUniform, initializer
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.inceptionv4 import Inceptionv4
from src.dataset import create_dataset, device_num
from src.config import config
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
set_seed(1)
def generate_cosine_lr(steps_per_epoch, total_epochs,
lr_init=config.lr_init,
lr_end=config.lr_end,
lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs):
"""
Applies cosine decay to generate learning rate array.
Args:
steps_per_epoch(int): steps number per epoch
total_epochs(int): all epoch in training.
lr_init(float): init learning rate.
lr_end(float): end learning rate
lr_max(float): max learning rate.
warmup_steps(int): all steps in warmup epochs.
Returns:
np.array, learning rate array.
"""
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
decay_steps = total_steps - warmup_steps
lr_each_step = []
for i in range(total_steps):
if i < warmup_steps:
lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps)
lr = float(lr_init) + lr_inc * (i + 1)
else:
cosine_decay = 0.5 * (1 + math.cos(math.pi * (i - warmup_steps) / decay_steps))
lr = (lr_max - lr_end) * cosine_decay + lr_end
lr_each_step.append(lr)
learning_rate = np.array(lr_each_step).astype(np.float32)
current_step = steps_per_epoch * (config.start_epoch - 1)
learning_rate = learning_rate[current_step:]
return learning_rate
def inception_v4_train():
"""
Train Inceptionv4 in data parallelism
"""
print('epoch_size: {} batch_size: {} class_num {}'.format(config.epoch_size, config.batch_size, config.num_classes))
context.set_context(mode=context.GRAPH_MODE, device_target=args.platform)
if args.platform == "Ascend":
context.set_context(device_id=args.device_id)
context.set_context(enable_graph_kernel=False)
rank = 0
if device_num > 1:
if args.platform == "Ascend":
init(backend_name='hccl')
elif args.platform == "GPU":
init()
else:
raise ValueError("Unsupported device target.")
rank = get_rank()
context.set_auto_parallel_context(device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True,
all_reduce_fusion_config=[200, 400])
# create dataset
train_dataset = create_dataset(dataset_path=args.dataset_path, do_train=True,
repeat_num=1, batch_size=config.batch_size, shard_id=rank)
train_step_size = train_dataset.get_dataset_size()
# create model
net = Inceptionv4(classes=config.num_classes)
# loss
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
# learning rate
lr = Tensor(generate_cosine_lr(steps_per_epoch=train_step_size, total_epochs=config.epoch_size))
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
param.set_data(initializer(XavierUniform(), param.data.shape, param.data.dtype))
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
{'params': no_decayed_params},
{'order_params': net.trainable_params()}]
opt = RMSProp(group_params, lr, decay=config.decay, epsilon=config.epsilon, weight_decay=config.weight_decay,
momentum=config.momentum, loss_scale=config.loss_scale)
if args.device_id == 0:
print(lr)
print(train_step_size)
if args.resume:
ckpt = load_checkpoint(args.resume)
load_param_into_net(net, ckpt)
loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
if args.platform == "Ascend":
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc', 'top_1_accuracy', 'top_5_accuracy'},
loss_scale_manager=loss_scale_manager, amp_level=config.amp_level)
elif args.platform == "GPU":
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc', 'top_1_accuracy', 'top_5_accuracy'},
loss_scale_manager=loss_scale_manager, amp_level='O0')
else:
raise ValueError("Unsupported device target.")
# define callbacks
performance_cb = TimeMonitor(data_size=train_step_size)
loss_cb = LossMonitor(per_print_times=train_step_size)
ckp_save_step = config.save_checkpoint_epochs * train_step_size
config_ck = CheckpointConfig(save_checkpoint_steps=ckp_save_step, keep_checkpoint_max=config.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix=f"inceptionV4-train-rank{rank}",
directory='ckpts_rank_' + str(rank), config=config_ck)
callbacks = [performance_cb, loss_cb]
if device_num > 1 and config.is_save_on_master:
if args.device_id == 0:
callbacks.append(ckpoint_cb)
else:
callbacks.append(ckpoint_cb)
# train model
model.train(config.epoch_size, train_dataset, callbacks=callbacks, dataset_sink_mode=True)
def parse_args():
'''parse_args'''
arg_parser = argparse.ArgumentParser(description='InceptionV4 image classification training')
arg_parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
arg_parser.add_argument('--device_id', type=int, default=0, help='device id')
arg_parser.add_argument('--platform', type=str, default='Ascend', choices=("Ascend", "GPU"),
help='Platform, support Ascend, GPU.')
arg_parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
args_opt = arg_parser.parse_args()
return args_opt
if __name__ == '__main__':
args = parse_args()
inception_v4_train()
print('Inceptionv4 training success!')