You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/mobilenetv1/export.py

57 lines
2.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import export, load_checkpoint
from src.mobilenet_v1 import mobilenet_v1 as mobilenet
parser = argparse.ArgumentParser(description="mobilenetv1 export")
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--dataset", type=str, default="imagenet2012", help="Dataset, either cifar10 or imagenet2012")
parser.add_argument('--width', type=int, default=224, help='input width')
parser.add_argument('--height', type=int, default=224, help='input height')
parser.add_argument("--file_name", type=str, default="mobilenetv1", help="output file name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
help="device target")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if args.dataset == "cifar10":
from src.config import config1 as config
else:
from src.config import config2 as config
if __name__ == "__main__":
target = args.device_target
if target != "GPU":
context.set_context(device_id=args.device_id)
network = mobilenet(class_num=config.class_num)
param_dict = load_checkpoint(args.ckpt_file, net=network)
network.set_train(False)
input_data = Tensor(np.zeros([config.batch_size, 3, args.height, args.width]).astype(np.float32))
export(network, input_data, file_name=args.file_name, file_format=args.file_format)