You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/resnet/train.py

255 lines
13 KiB

4 years ago
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
import argparse
import ast
from mindspore import context
from mindspore import Tensor
from mindspore.nn.optim import Momentum, THOR
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.train_thor import ConvertModelUtils
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.common import set_seed
from mindspore.parallel import set_algo_parameters
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
import mindspore.log as logger
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
from src.CrossEntropySmooth import CrossEntropySmooth
from src.config import cfg
from src.eval_callback import EvalCallBack
from src.metric import DistAccuracy, ClassifyCorrectCell
parser = argparse.ArgumentParser(description='Image classification')
4 years ago
parser.add_argument('--net', type=str, default=None, help='Resnet Model, resnet18, resnet50 or resnet101')
parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
help="Device target, support Ascend, GPU and CPU.")
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
help="Filter head weight parameters, default is False.")
parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
help="Run evaluation when training, default is False.")
parser.add_argument('--eval_dataset_path', type=str, default=None, help='Evaluation dataset path when run_eval is True')
parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
help="Save best checkpoint when run_eval is True, default is True.")
parser.add_argument("--eval_start_epoch", type=int, default=40,
help="Evaluation start epoch when run_eval is True, default is 40.")
parser.add_argument("--eval_interval", type=int, default=1,
help="Evaluation interval when run_eval is True, default is 1.")
args_opt = parser.parse_args()
set_seed(1)
4 years ago
if args_opt.net in ("resnet18", "resnet50"):
if args_opt.net == "resnet18":
from src.resnet import resnet18 as resnet
if args_opt.net == "resnet50":
from src.resnet import resnet50 as resnet
if args_opt.dataset == "cifar10":
from src.config import config1 as config
from src.dataset import create_dataset1 as create_dataset
else:
from src.config import config2 as config
from src.dataset import create_dataset2 as create_dataset
4 years ago
elif args_opt.net == "resnet101":
from src.resnet import resnet101 as resnet
from src.config import config3 as config
from src.dataset import create_dataset3 as create_dataset
else:
from src.resnet import se_resnet50 as resnet
from src.config import config4 as config
from src.dataset import create_dataset4 as create_dataset
if cfg.optimizer == "Thor":
if args_opt.device_target == "Ascend":
from src.config import config_thor_Ascend as config
else:
from src.config import config_thor_gpu as config
def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
"""remove useless parameters according to filter_list"""
for key in list(origin_dict.keys()):
for name in param_filter:
if name in key:
print("Delete parameter from checkpoint: ", key)
del origin_dict[key]
break
def apply_eval(eval_param):
eval_model = eval_param["model"]
eval_ds = eval_param["dataset"]
metrics_name = eval_param["metrics_name"]
res = eval_model.eval(eval_ds)
return res[metrics_name]
if __name__ == '__main__':
target = args_opt.device_target
if target == "CPU":
args_opt.run_distribute = False
ckpt_save_dir = config.save_checkpoint_path
# init context
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
if args_opt.parameter_server:
context.set_ps_context(enable_ps=True)
if args_opt.run_distribute:
if target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
set_algo_parameters(elementwise_op_strategy_follow=True)
if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
elif args_opt.net == "resnet101":
context.set_auto_parallel_context(all_reduce_fusion_config=[80, 210, 313])
init()
# GPU target
else:
init()
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
if args_opt.net == "resnet50":
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
# create dataset
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
batch_size=config.batch_size, target=target, distribute=args_opt.run_distribute)
step_size = dataset.get_dataset_size()
# define net
net = resnet(class_num=config.class_num)
if args_opt.parameter_server:
net.set_param_ps()
# init weight
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
if args_opt.filter_weight:
filter_list = [x.name for x in net.end_point.get_parameters()]
filter_checkpoint_parameter_by_list(param_dict, filter_list)
load_param_into_net(net, param_dict)
else:
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d):
4 years ago
cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
cell.weight.shape,
cell.weight.dtype))
if isinstance(cell, nn.Dense):
4 years ago
cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
cell.weight.shape,
cell.weight.dtype))
# init lr
if cfg.optimizer == "Thor":
from src.lr_generator import get_thor_lr
lr = get_thor_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
else:
4 years ago
if args_opt.net in ("resnet18", "resnet50", "se-resnet50"):
lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode)
else:
lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
config.pretrain_epoch_size * step_size)
lr = Tensor(lr)
# define opt
5 years ago
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
{'params': no_decayed_params},
{'order_params': net.trainable_params()}]
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
if args_opt.dataset == "imagenet2012":
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
else:
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
dist_eval_network = ClassifyCorrectCell(net) if args_opt.run_distribute else None
metrics = {"acc"}
if args_opt.run_distribute:
metrics = {'acc': DistAccuracy(batch_size=config.batch_size, device_num=args_opt.device_num)}
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=metrics,
amp_level="O2", keep_batchnorm_fp32=False, eval_network=dist_eval_network)
if (args_opt.net != "resnet101" and args_opt.net != "resnet50") or \
args_opt.parameter_server or target == "CPU":
## fp32 training
model = Model(net, loss_fn=loss, optimizer=opt, metrics=metrics, eval_network=dist_eval_network)
if cfg.optimizer == "Thor" and args_opt.dataset == "imagenet2012":
from src.lr_generator import get_thor_damping
damping = get_thor_damping(0, config.damping_init, config.damping_decay, 70, step_size)
split_indices = [26, 53]
opt = THOR(net, lr, Tensor(damping), config.momentum, config.weight_decay, config.loss_scale,
config.batch_size, split_indices=split_indices)
model = ConvertModelUtils().convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=opt,
loss_scale_manager=loss_scale, metrics={'acc'},
amp_level="O2", keep_batchnorm_fp32=False,
frequency=config.frequency)
args_opt.run_eval = False
logger.warning("Thor optimizer not support evaluation while training.")
# define callbacks
time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossMonitor()
cb = [time_cb, loss_cb]
if config.save_checkpoint:
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
if args_opt.run_eval:
if args_opt.eval_dataset_path is None or (not os.path.isdir(args_opt.eval_dataset_path)):
raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
eval_dataset = create_dataset(dataset_path=args_opt.eval_dataset_path, do_train=False,
batch_size=config.batch_size, target=target)
eval_param_dict = {"model": model, "dataset": eval_dataset, "metrics_name": "acc"}
eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
ckpt_directory=ckpt_save_dir, besk_ckpt_name="best_acc.ckpt",
metrics_name="acc")
cb += [eval_cb]
# train model
if args_opt.net == "se-resnet50":
config.epoch_size = config.train_epoch_size
dataset_sink_mode = (not args_opt.parameter_server) and target != "CPU"
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)