|
|
|
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""train resnet."""
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import ast
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.nn.optim import Momentum, THOR
|
|
|
|
from mindspore.train.model import Model
|
|
|
|
from mindspore.context import ParallelMode
|
|
|
|
from mindspore.train.train_thor import ConvertModelUtils
|
|
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
from mindspore.common import set_seed
|
|
|
|
from mindspore.parallel import set_algo_parameters
|
|
|
|
import mindspore.nn as nn
|
|
|
|
import mindspore.common.initializer as weight_init
|
|
|
|
import mindspore.log as logger
|
|
|
|
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
|
|
|
|
from src.CrossEntropySmooth import CrossEntropySmooth
|
|
|
|
from src.config import cfg
|
|
|
|
from src.eval_callback import EvalCallBack
|
|
|
|
from src.metric import DistAccuracy, ClassifyCorrectCell
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
|
|
parser.add_argument('--net', type=str, default=None, help='Resnet Model, resnet18, resnet50 or resnet101')
|
|
|
|
parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
|
|
|
|
parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
|
|
|
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|
|
|
|
|
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
|
|
parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
|
|
|
|
help="Device target, support Ascend, GPU and CPU.")
|
|
|
|
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
|
|
|
parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
|
|
|
|
parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
|
|
|
|
help="Filter head weight parameters, default is False.")
|
|
|
|
parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
|
|
|
|
help="Run evaluation when training, default is False.")
|
|
|
|
parser.add_argument('--eval_dataset_path', type=str, default=None, help='Evaluation dataset path when run_eval is True')
|
|
|
|
parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
|
|
|
|
help="Save best checkpoint when run_eval is True, default is True.")
|
|
|
|
parser.add_argument("--eval_start_epoch", type=int, default=40,
|
|
|
|
help="Evaluation start epoch when run_eval is True, default is 40.")
|
|
|
|
parser.add_argument("--eval_interval", type=int, default=1,
|
|
|
|
help="Evaluation interval when run_eval is True, default is 1.")
|
|
|
|
args_opt = parser.parse_args()
|
|
|
|
|
|
|
|
set_seed(1)
|
|
|
|
|
|
|
|
if args_opt.net in ("resnet18", "resnet50"):
|
|
|
|
if args_opt.net == "resnet18":
|
|
|
|
from src.resnet import resnet18 as resnet
|
|
|
|
if args_opt.net == "resnet50":
|
|
|
|
from src.resnet import resnet50 as resnet
|
|
|
|
if args_opt.dataset == "cifar10":
|
|
|
|
from src.config import config1 as config
|
|
|
|
from src.dataset import create_dataset1 as create_dataset
|
|
|
|
else:
|
|
|
|
from src.config import config2 as config
|
|
|
|
from src.dataset import create_dataset2 as create_dataset
|
|
|
|
|
|
|
|
elif args_opt.net == "resnet101":
|
|
|
|
from src.resnet import resnet101 as resnet
|
|
|
|
from src.config import config3 as config
|
|
|
|
from src.dataset import create_dataset3 as create_dataset
|
|
|
|
else:
|
|
|
|
from src.resnet import se_resnet50 as resnet
|
|
|
|
from src.config import config4 as config
|
|
|
|
from src.dataset import create_dataset4 as create_dataset
|
|
|
|
|
|
|
|
if cfg.optimizer == "Thor":
|
|
|
|
if args_opt.device_target == "Ascend":
|
|
|
|
from src.config import config_thor_Ascend as config
|
|
|
|
else:
|
|
|
|
from src.config import config_thor_gpu as config
|
|
|
|
|
|
|
|
|
|
|
|
def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
|
|
|
|
"""remove useless parameters according to filter_list"""
|
|
|
|
for key in list(origin_dict.keys()):
|
|
|
|
for name in param_filter:
|
|
|
|
if name in key:
|
|
|
|
print("Delete parameter from checkpoint: ", key)
|
|
|
|
del origin_dict[key]
|
|
|
|
break
|
|
|
|
|
|
|
|
def apply_eval(eval_param):
|
|
|
|
eval_model = eval_param["model"]
|
|
|
|
eval_ds = eval_param["dataset"]
|
|
|
|
metrics_name = eval_param["metrics_name"]
|
|
|
|
res = eval_model.eval(eval_ds)
|
|
|
|
return res[metrics_name]
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
target = args_opt.device_target
|
|
|
|
if target == "CPU":
|
|
|
|
args_opt.run_distribute = False
|
|
|
|
|
|
|
|
ckpt_save_dir = config.save_checkpoint_path
|
|
|
|
|
|
|
|
# init context
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
|
|
|
|
if args_opt.parameter_server:
|
|
|
|
context.set_ps_context(enable_ps=True)
|
|
|
|
if args_opt.run_distribute:
|
|
|
|
if target == "Ascend":
|
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
|
|
context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
|
|
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
|
|
gradients_mean=True)
|
|
|
|
set_algo_parameters(elementwise_op_strategy_follow=True)
|
|
|
|
if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
|
|
|
|
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
|
|
|
|
elif args_opt.net == "resnet101":
|
|
|
|
context.set_auto_parallel_context(all_reduce_fusion_config=[80, 210, 313])
|
|
|
|
init()
|
|
|
|
# GPU target
|
|
|
|
else:
|
|
|
|
init()
|
|
|
|
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
|
|
gradients_mean=True)
|
|
|
|
if args_opt.net == "resnet50":
|
|
|
|
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
|
|
|
|
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
|
|
|
|
|
|
|
|
# create dataset
|
|
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
|
|
|
|
batch_size=config.batch_size, target=target, distribute=args_opt.run_distribute)
|
|
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
|
|
|
|
# define net
|
|
|
|
net = resnet(class_num=config.class_num)
|
|
|
|
if args_opt.parameter_server:
|
|
|
|
net.set_param_ps()
|
|
|
|
|
|
|
|
# init weight
|
|
|
|
if args_opt.pre_trained:
|
|
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
|
|
if args_opt.filter_weight:
|
|
|
|
filter_list = [x.name for x in net.end_point.get_parameters()]
|
|
|
|
filter_checkpoint_parameter_by_list(param_dict, filter_list)
|
|
|
|
load_param_into_net(net, param_dict)
|
|
|
|
else:
|
|
|
|
for _, cell in net.cells_and_names():
|
|
|
|
if isinstance(cell, nn.Conv2d):
|
|
|
|
cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
|
|
|
|
cell.weight.shape,
|
|
|
|
cell.weight.dtype))
|
|
|
|
if isinstance(cell, nn.Dense):
|
|
|
|
cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
|
|
|
|
cell.weight.shape,
|
|
|
|
cell.weight.dtype))
|
|
|
|
|
|
|
|
# init lr
|
|
|
|
if cfg.optimizer == "Thor":
|
|
|
|
from src.lr_generator import get_thor_lr
|
|
|
|
lr = get_thor_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
|
|
|
|
else:
|
|
|
|
if args_opt.net in ("resnet18", "resnet50", "se-resnet50"):
|
|
|
|
lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
|
|
|
|
warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
|
|
|
|
lr_decay_mode=config.lr_decay_mode)
|
|
|
|
else:
|
|
|
|
lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
|
|
|
|
config.pretrain_epoch_size * step_size)
|
|
|
|
lr = Tensor(lr)
|
|
|
|
|
|
|
|
# define opt
|
|
|
|
decayed_params = []
|
|
|
|
no_decayed_params = []
|
|
|
|
for param in net.trainable_params():
|
|
|
|
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
|
|
|
|
decayed_params.append(param)
|
|
|
|
else:
|
|
|
|
no_decayed_params.append(param)
|
|
|
|
|
|
|
|
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
|
|
|
{'params': no_decayed_params},
|
|
|
|
{'order_params': net.trainable_params()}]
|
|
|
|
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
|
|
|
|
if args_opt.dataset == "imagenet2012":
|
|
|
|
if not config.use_label_smooth:
|
|
|
|
config.label_smooth_factor = 0.0
|
|
|
|
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
|
|
|
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
|
|
else:
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
|
|
dist_eval_network = ClassifyCorrectCell(net) if args_opt.run_distribute else None
|
|
|
|
metrics = {"acc"}
|
|
|
|
if args_opt.run_distribute:
|
|
|
|
metrics = {'acc': DistAccuracy(batch_size=config.batch_size, device_num=args_opt.device_num)}
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=metrics,
|
|
|
|
amp_level="O2", keep_batchnorm_fp32=False, eval_network=dist_eval_network)
|
|
|
|
if (args_opt.net != "resnet101" and args_opt.net != "resnet50") or \
|
|
|
|
args_opt.parameter_server or target == "CPU":
|
|
|
|
## fp32 training
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, metrics=metrics, eval_network=dist_eval_network)
|
|
|
|
if cfg.optimizer == "Thor" and args_opt.dataset == "imagenet2012":
|
|
|
|
from src.lr_generator import get_thor_damping
|
|
|
|
damping = get_thor_damping(0, config.damping_init, config.damping_decay, 70, step_size)
|
|
|
|
split_indices = [26, 53]
|
|
|
|
opt = THOR(net, lr, Tensor(damping), config.momentum, config.weight_decay, config.loss_scale,
|
|
|
|
config.batch_size, split_indices=split_indices)
|
|
|
|
model = ConvertModelUtils().convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=opt,
|
|
|
|
loss_scale_manager=loss_scale, metrics={'acc'},
|
|
|
|
amp_level="O2", keep_batchnorm_fp32=False,
|
|
|
|
frequency=config.frequency)
|
|
|
|
args_opt.run_eval = False
|
|
|
|
logger.warning("Thor optimizer not support evaluation while training.")
|
|
|
|
|
|
|
|
# define callbacks
|
|
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
|
|
loss_cb = LossMonitor()
|
|
|
|
cb = [time_cb, loss_cb]
|
|
|
|
if config.save_checkpoint:
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
|
|
|
|
cb += [ckpt_cb]
|
|
|
|
if args_opt.run_eval:
|
|
|
|
if args_opt.eval_dataset_path is None or (not os.path.isdir(args_opt.eval_dataset_path)):
|
|
|
|
raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
|
|
|
|
eval_dataset = create_dataset(dataset_path=args_opt.eval_dataset_path, do_train=False,
|
|
|
|
batch_size=config.batch_size, target=target)
|
|
|
|
eval_param_dict = {"model": model, "dataset": eval_dataset, "metrics_name": "acc"}
|
|
|
|
eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
|
|
|
|
eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
|
|
|
|
ckpt_directory=ckpt_save_dir, besk_ckpt_name="best_acc.ckpt",
|
|
|
|
metrics_name="acc")
|
|
|
|
cb += [eval_cb]
|
|
|
|
# train model
|
|
|
|
if args_opt.net == "se-resnet50":
|
|
|
|
config.epoch_size = config.train_epoch_size
|
|
|
|
dataset_sink_mode = (not args_opt.parameter_server) and target != "CPU"
|
|
|
|
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
|
|
|
|
sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)
|