You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/execute_test.cc

209 lines
8.2 KiB

/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "include/api/types.h"
#include "minddata/dataset/core/de_tensor.h"
#include "minddata/dataset/include/execute.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using mindspore::LogStream;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::MsLogLevel::INFO;
class MindDataTestExecute : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestExecute, TestComposeTransforms) {
MS_LOG(INFO) << "Doing TestComposeTransforms.";
// Read images
auto image = ReadFileToTensor("data/dataset/apple.jpg");
// Transform params
std::shared_ptr<TensorTransform> decode = std::make_shared<vision::Decode>();
std::shared_ptr<TensorTransform> center_crop(new vision::CenterCrop({30}));
std::shared_ptr<TensorTransform> rescale = std::make_shared<vision::Rescale>(1. / 3, 0.5);
auto transform = Execute({decode, center_crop, rescale});
Status rc = transform(image, &image);
EXPECT_EQ(rc, Status::OK());
EXPECT_EQ(30, image.Shape()[0]);
EXPECT_EQ(30, image.Shape()[1]);
}
TEST_F(MindDataTestExecute, TestTransformInput1) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput1.";
// Test Execute with transform op input using API constructors, with std::shared_ptr<TensorTransform pointers,
// instantiated via mix of make_shared and new
// Read images
auto image = ReadFileToTensor("data/dataset/apple.jpg");
// Define transform operations
std::shared_ptr<TensorTransform> decode = std::make_shared<vision::Decode>();
std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
std::shared_ptr<TensorTransform> normalize(
new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
std::shared_ptr<TensorTransform> hwc2chw = std::make_shared<vision::HWC2CHW>();
mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
// Apply transform on image
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}
TEST_F(MindDataTestExecute, TestTransformInput2) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput2.";
// Test Execute with transform op input using API constructors, with std::shared_ptr<TensorTransform pointers,
// instantiated via new
// With this way of creating TensorTransforms, we don't need to explicitly delete the object created with the
// "new" keyword. When the shared pointer goes out of scope the object destructor will be called.
// Read image, construct MSTensor from dataset tensor
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform operations
std::shared_ptr<TensorTransform> decode(new vision::Decode());
std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
std::shared_ptr<TensorTransform> normalize(
new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
// Apply transform on image
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}
TEST_F(MindDataTestExecute, TestTransformInput3) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput3.";
// Test Execute with transform op input using API constructors, with auto pointers
// Read image, construct MSTensor from dataset tensor
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform operations
auto decode = vision::Decode();
mindspore::dataset::Execute Transform1(decode);
auto resize = vision::Resize({224, 224});
mindspore::dataset::Execute Transform2(resize);
// Apply transform on image
Status rc;
rc = Transform1(image, &image);
ASSERT_TRUE(rc.IsOk());
rc = Transform2(image, &image);
ASSERT_TRUE(rc.IsOk());
// Check image info
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 224);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 3);
}
TEST_F(MindDataTestExecute, TestTransformInputSequential) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInputSequential.";
// Test Execute with transform op input using API constructors, with auto pointers;
// Apply 2 transformations sequentially, including single non-vector Transform op input
// Read image, construct MSTensor from dataset tensor
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform#1 operations
std::shared_ptr<TensorTransform> decode(new vision::Decode());
std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
std::shared_ptr<TensorTransform> normalize(
new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
std::vector<std::shared_ptr<TensorTransform>> op_list = {decode, resize, normalize};
mindspore::dataset::Execute Transform(op_list);
// Apply transform#1 on image
Status rc = Transform(image, &image);
// Define transform#2 operations
std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
mindspore::dataset::Execute Transform2(hwc2chw);
// Apply transform#2 on image
rc = Transform2(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}
TEST_F(MindDataTestExecute, TestTransformDecodeResizeCenterCrop1) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformDecodeResizeCenterCrop1.";
// Test Execute with Decode, Resize and CenterCrop transform ops input using API constructors, with shared pointers
// Read image, construct MSTensor from dataset tensor
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform operations
std::vector<int32_t> resize_paras = {256, 256};
std::vector<int32_t> crop_paras = {224, 224};
std::shared_ptr<TensorTransform> decode(new vision::Decode());
std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
std::vector<std::shared_ptr<TensorTransform>> op_list = {decode, resize, centercrop, hwc2chw};
mindspore::dataset::Execute Transform(op_list, MapTargetDevice::kCpu);
// Apply transform on image
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}