You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/stand_alone_samplers_test.cc

103 lines
3.9 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/core/client.h"
#include "minddata/dataset/core/global_context.h"
#include "minddata/dataset/engine/datasetops/source/sampler/distributed_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/random_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
#include "minddata/dataset/util/status.h"
#include "gtest/gtest.h"
#include "utils/log_adapter.h"
#include "securec.h"
using namespace mindspore::dataset;
Status CreateINT64Tensor(std::shared_ptr<Tensor> *sample_ids, int64_t num_elements, unsigned char *data = nullptr) {
TensorShape shape(std::vector<int64_t>(1, num_elements));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(shape, DataType(DataType::DE_INT64), data, sample_ids));
return Status::OK();
}
class MindDataTestStandAloneSampler : public UT::DatasetOpTesting {
protected:
class MockStorageOp : public RandomAccessOp {
public:
MockStorageOp(int64_t val){
// row count is in base class as protected member
// GetNumRowsInDataset does not need an override, the default from base class is fine.
num_rows_ = val;
}
};
};
TEST_F(MindDataTestStandAloneSampler, TestDistributedSampler) {
std::vector<std::shared_ptr<Tensor>> row;
uint64_t res[6][7] = {{0, 3, 6, 9, 12, 15, 18}, {1, 4, 7, 10, 13, 16, 19}, {2, 5, 8, 11, 14, 17, 0},
{0, 17, 4, 10, 14, 8, 15}, {13, 9, 16, 3, 2, 19, 12}, {1, 11, 6, 18, 7, 5, 0}};
for (int i = 0; i < 6; i++) {
std::shared_ptr<Tensor> t;
Tensor::CreateFromMemory(TensorShape({7}), DataType(DataType::DE_INT64), (unsigned char *)(res[i]), &t);
row.push_back(t);
}
MockStorageOp mock(20);
std::unique_ptr<DataBuffer> db;
std::shared_ptr<Tensor> tensor;
int64_t num_samples = 0;
for (int i = 0; i < 6; i++) {
std::shared_ptr<SamplerRT> sampler =
std::make_shared<DistributedSamplerRT>(num_samples, 3, i % 3, (i < 3 ? false : true));
sampler->HandshakeRandomAccessOp(&mock);
sampler->GetNextSample(&db);
db->GetTensor(&tensor, 0, 0);
MS_LOG(DEBUG) << (*tensor);
if(i < 3) { // This is added due to std::shuffle()
EXPECT_TRUE((*tensor) == (*row[i]));
}
}
}
TEST_F(MindDataTestStandAloneSampler, TestStandAoneSequentialSampler) {
std::vector<std::shared_ptr<Tensor>> row;
MockStorageOp mock(5);
uint64_t res[5] = {0, 1, 2, 3, 4};
std::shared_ptr<Tensor> label1, label2;
CreateINT64Tensor(&label1, 3, reinterpret_cast<unsigned char *>(res));
CreateINT64Tensor(&label2, 2, reinterpret_cast<unsigned char *>(res + 3));
int64_t num_samples = 0;
int64_t start_index = 0;
std::shared_ptr<SamplerRT> sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index, 3);
std::unique_ptr<DataBuffer> db;
std::shared_ptr<Tensor> tensor;
sampler->HandshakeRandomAccessOp(&mock);
sampler->GetNextSample(&db);
db->GetTensor(&tensor, 0, 0);
EXPECT_TRUE((*tensor) == (*label1));
sampler->GetNextSample(&db);
db->GetTensor(&tensor, 0, 0);
EXPECT_TRUE((*tensor) == (*label2));
sampler->ResetSampler();
sampler->GetNextSample(&db);
db->GetTensor(&tensor, 0, 0);
EXPECT_TRUE((*tensor) == (*label1));
sampler->GetNextSample(&db);
db->GetTensor(&tensor, 0, 0);
EXPECT_TRUE((*tensor) == (*label2));
}