You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/example/lenet_mnist/README.md

64 lines
1.6 KiB

# LeNet Example
## Description
Training LeNet with MNIST dataset in MindSpore.
This is the simple and basic tutorial for constructing a network in MindSpore.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the MNIST dataset at <http://yann.lecun.com/exdb/mnist/>. The directory structure is as follows:
```
└─MNIST_Data
├─test
│ t10k-images.idx3-ubyte
│ t10k-labels.idx1-ubyte
└─train
train-images.idx3-ubyte
train-labels.idx1-ubyte
```
## Running the example
```python
# train LeNet, hyperparameter setting in config.py
python train.py --data_path MNIST_Data
```
You can get loss with each step similar to this:
```bash
epoch: 1 step: 1, loss is 2.3040335
...
epoch: 1 step: 1739, loss is 0.06952668
epoch: 1 step: 1740, loss is 0.05038793
epoch: 1 step: 1741, loss is 0.05018193
...
```
Then, test LeNet according to network model
```python
# test LeNet, after 1 epoch training, the accuracy is up to 96.5%
python eval.py --data_path MNIST_Data --mode test --ckpt_path checkpoint_lenet-1_1875.ckpt
```
## Note
There are some optional arguments:
```bash
-h, --help show this help message and exit
--device_target {Ascend,GPU,CPU}
device where the code will be implemented (default: Ascend)
--data_path DATA_PATH
path where the dataset is saved
--dataset_sink_mode DATASET_SINK_MODE
dataset_sink_mode is False or True
```
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.