You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/research/audio/wavenet/export.py

96 lines
4.1 KiB

4 years ago
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export mindir."""
import json
from os.path import join
import argparse
from warnings import warn
from hparams import hparams, hparams_debug_string
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from wavenet_vocoder import WaveNet
from wavenet_vocoder.util import is_mulaw_quantize, is_scalar_input
import numpy as np
from src.loss import PredictNet
parser = argparse.ArgumentParser(description='TTS training')
parser.add_argument('--preset', type=str, default='', help='Path of preset parameters (json).')
parser.add_argument('--speaker_id', type=str, default='',
help=' Use specific speaker of data in case for multi-speaker datasets.')
parser.add_argument('--pretrain_ckpt', type=str, default='', help='Pretrained checkpoint path')
args = parser.parse_args()
if __name__ == '__main__':
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
speaker_id = int(args.speaker_id) if args.speaker_id != '' else None
if args.preset is not None:
with open(args.preset) as f:
hparams.parse_json(f.read())
assert hparams.name == "wavenet_vocoder"
print(hparams_debug_string())
fs = hparams.sample_rate
output_json_path = join(args.checkpoint_dir, "hparams.json")
with open(output_json_path, "w") as f:
json.dump(hparams.values(), f, indent=2)
if is_mulaw_quantize(hparams.input_type):
if hparams.out_channels != hparams.quantize_channels:
raise RuntimeError(
"out_channels must equal to quantize_chennels if input_type is 'mulaw-quantize'")
if hparams.upsample_conditional_features and hparams.cin_channels < 0:
s = "Upsample conv layers were specified while local conditioning disabled. "
s += "Notice that upsample conv layers will never be used."
warn(s)
upsample_params = hparams.upsample_params
upsample_params["cin_channels"] = hparams.cin_channels
upsample_params["cin_pad"] = hparams.cin_pad
model = WaveNet(
out_channels=hparams.out_channels,
layers=hparams.layers,
stacks=hparams.stacks,
residual_channels=hparams.residual_channels,
gate_channels=hparams.gate_channels,
skip_out_channels=hparams.skip_out_channels,
cin_channels=hparams.cin_channels,
gin_channels=hparams.gin_channels,
n_speakers=hparams.n_speakers,
dropout=hparams.dropout,
kernel_size=hparams.kernel_size,
cin_pad=hparams.cin_pad,
upsample_conditional_features=hparams.upsample_conditional_features,
upsample_params=upsample_params,
scalar_input=is_scalar_input(hparams.input_type),
output_distribution=hparams.output_distribution,
)
Net = PredictNet(model)
Net.set_train(False)
receptive_field = model.receptive_field
print("Receptive field (samples / ms): {} / {}".format(receptive_field, receptive_field / fs * 1000))
param_dict = load_checkpoint(args.pretrain_ckpt)
load_param_into_net(model, param_dict)
print('Successfully loading the pre-trained model')
x = np.array(np.random.random((2, 256, 10240)), dtype=np.float32)
c = np.array(np.random.random((2, 80, 44)), dtype=np.float32)
g = np.array([0, 0], dtype=np.int64)
export(Net, Tensor(x), Tensor(c), Tensor(g), file_name="WaveNet", file_format='MINDIR')