|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops.operations._inner_ops import Send, Receive
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
|
|
|
|
|
|
|
init()
|
|
|
|
rank = get_rank()
|
|
|
|
size = get_group_size()
|
|
|
|
if size % 2 != 0:
|
|
|
|
raise RuntimeError("Group size should be divided by 2 exactly.")
|
|
|
|
x = np.ones([3, 3, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
|
|
|
|
|
|
|
|
|
|
|
|
class SendNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(SendNet, self).__init__()
|
|
|
|
self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
|
|
|
|
self.depend = P.Depend()
|
|
|
|
self.send = Send(sr_tag=0, dest_rank=rank+size//2, group=NCCL_WORLD_COMM_GROUP)
|
|
|
|
|
|
|
|
def construct(self):
|
|
|
|
out = self.depend(self.x, self.send(self.x))
|
|
|
|
return out
|
|
|
|
|
|
|
|
class RecvNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(RecvNet, self).__init__()
|
|
|
|
self.recv = Receive(sr_tag=0, src_rank=rank-size//2, shape=[3, 3, 3, 3], dtype=mstype.float32,
|
|
|
|
group=NCCL_WORLD_COMM_GROUP)
|
|
|
|
|
|
|
|
def construct(self):
|
|
|
|
out = self.recv()
|
|
|
|
return out
|
|
|
|
|
|
|
|
def test_send_recv():
|
|
|
|
if rank < size / 2:
|
|
|
|
send_net = SendNet()
|
|
|
|
output = send_net()
|
|
|
|
else:
|
|
|
|
expect_output = np.ones([3, 3, 3, 3]).astype(np.float32) * 0.01 * (rank-size//2 + 1)
|
|
|
|
recv_net = RecvNet()
|
|
|
|
output = recv_net()
|
|
|
|
|
|
|
|
diff = abs(output.asnumpy() - expect_output)
|
|
|
|
error = np.ones(shape=output.shape) * 1.0e-5
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert expect_output.shape == output.shape
|