You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
3.8 KiB
85 lines
3.8 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore.common.tensor import Tensor
|
||
|
from mindspore.common.parameter import Parameter
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self, input_scale, input_bias, input_mean, input_variance, is_training):
|
||
|
super(Net, self).__init__()
|
||
|
self.fused_bn_ex = P.BatchNorm(is_training=is_training, epsilon=1e-5, momentum=0.9)
|
||
|
self.scale = Parameter(input_scale, name='scale')
|
||
|
self.bias = Parameter(input_bias, name='b')
|
||
|
self.mean = Parameter(input_mean, name='mean')
|
||
|
self.variance = Parameter(input_variance, name='variance')
|
||
|
def construct(self, input_x):
|
||
|
return self.fused_bn_ex(input_x, self.scale, self.bias, self.mean, self.variance)
|
||
|
|
||
|
|
||
|
def get_output(x, weight, bias, moving_mean, moving_var, is_training, enable_graph_kernel=False):
|
||
|
if enable_graph_kernel:
|
||
|
context.set_context(enable_graph_kernel=True)
|
||
|
net = Net(Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var), is_training)
|
||
|
output = net(Tensor(x))
|
||
|
return output, net.mean, net.variance
|
||
|
|
||
|
|
||
|
def test_bn_train():
|
||
|
x = np.random.normal(0, 1, [1, 2, 4, 4]).astype(np.float32)
|
||
|
weight = np.random.normal(0, 1, [2,]).astype(np.float32)
|
||
|
bias = np.random.normal(0, 1, [2,]).astype(np.float32)
|
||
|
moving_mean = np.random.normal(0, 1, [2,]).astype(np.float32)
|
||
|
moving_var = np.random.normal(0, 1, [2,]).astype(np.float32)
|
||
|
|
||
|
train_expect = get_output(x, weight, bias, moving_mean, moving_var, True, False)
|
||
|
train_output = get_output(x, weight, bias, moving_mean, moving_var, True, True)
|
||
|
|
||
|
assert np.allclose(train_expect[0][0].asnumpy(), train_output[0][0].asnumpy(), 0.0001, 0.0001)
|
||
|
assert np.allclose(train_expect[0][3].asnumpy(), train_output[0][3].asnumpy(), 0.0001, 0.0001)
|
||
|
assert np.allclose(train_expect[0][4].asnumpy(), train_output[0][4].asnumpy(), 0.0001, 0.0001)
|
||
|
assert np.allclose(train_expect[1].data.asnumpy(), train_output[1].data.asnumpy(), 0.0001, 0.0001)
|
||
|
assert np.allclose(train_expect[2].data.asnumpy(), train_output[2].data.asnumpy(), 0.0001, 0.0001)
|
||
|
|
||
|
def test_bn_infer():
|
||
|
x = np.random.normal(5, 1, [1, 2, 4, 4]).astype(np.float32)
|
||
|
weight = np.random.normal(5, 1, [2,]).astype(np.float32)
|
||
|
bias = np.random.normal(5, 1, [2,]).astype(np.float32)
|
||
|
moving_mean = np.random.normal(5, 1, [2,]).astype(np.float32)
|
||
|
moving_var = np.random.normal(5, 1, [2,]).astype(np.float32)
|
||
|
|
||
|
infer_expect = get_output(x, weight, bias, moving_mean, moving_var, False, False)
|
||
|
infer_output = get_output(x, weight, bias, moving_mean, moving_var, False, True)
|
||
|
|
||
|
assert np.allclose(infer_expect[0][0].asnumpy(), infer_output[0][0].asnumpy(), 0.0001, 0.0001)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_bn_train_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
test_bn_train()
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_bn_infer_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
test_bn_infer()
|