You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.1 KiB
63 lines
2.1 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops.operations import _grad_ops as G
|
||
|
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(Net, self).__init__()
|
||
|
self.relu_grad = G.ReluGrad()
|
||
|
|
||
|
def construct(self, y_backprop, x):
|
||
|
return self.relu_grad(y_backprop, x)
|
||
|
|
||
|
|
||
|
def get_output(y_backprop, x, enable_graph_kernel=False):
|
||
|
if enable_graph_kernel:
|
||
|
context.set_context(enable_graph_kernel=True)
|
||
|
net = Net()
|
||
|
output = net(y_backprop, x)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def test_relu_grad(shape1, shape2, dtype):
|
||
|
x = Tensor(np.random.normal(0, 10, shape1).astype(dtype))
|
||
|
y_backprop = Tensor(np.random.normal(0, 10, shape2).astype(dtype))
|
||
|
expect = get_output(y_backprop, x, False)
|
||
|
output = get_output(y_backprop, x, True)
|
||
|
|
||
|
expect_np = expect.asnumpy().copy()
|
||
|
output_np = output.asnumpy().copy()
|
||
|
|
||
|
assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_relu_grad_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
test_relu_grad((4, 3), (4, 3), np.int32)
|
||
|
test_relu_grad((12, 1), (12, 1), np.float16)
|
||
|
|
||
|
def test_relu_grad_ascend():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
|
test_relu_grad((4, 3), (4, 3), np.int32)
|
||
|
test_relu_grad((12, 1), (12, 1), np.float16)
|