You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/graph_kernel/test_sqrt_grad.py

62 lines
1.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sqrt_grad = G.SqrtGrad()
def construct(self, x, dout):
return self.sqrt_grad(x, dout)
def get_output(x, dout, enable_graph_kernel=False):
if enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
net = Net()
output = net(x, dout)
return output
def test_sqrt_grad(shape_x, shape_dout, dtype):
x = Tensor(np.random.normal(0, 1, shape_x).astype(dtype))
dout = Tensor(np.random.normal(0, 1, shape_dout).astype(dtype))
expect = get_output(x, dout, False)
output = get_output(x, dout, True)
expect_np = expect.asnumpy().copy()
output_np = output.asnumpy().copy()
rtol = 0.0001
atol = 0.0001
if dtype == np.float16:
rtol = 0.001
atol = 0.001
assert np.allclose(expect_np, output_np, rtol, atol)
def test_sqrt_grad_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_sqrt_grad((16, 16), (16, 16), np.float16)
test_sqrt_grad((16, 16), (16, 16), np.float32)