|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
""" create train dataset. """
|
|
|
|
|
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
import mindspore.common.dtype as mstype
|
|
|
|
|
import mindspore.dataset as ds
|
|
|
|
|
import mindspore.dataset.transforms.c_transforms as C2
|
|
|
|
|
import mindspore.dataset.vision.c_transforms as C
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(dataset_path, config, repeat_num=1, batch_size=32):
|
|
|
|
|
"""
|
|
|
|
|
create a train dataset
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dataset_path(string): the path of dataset.
|
|
|
|
|
config(EasyDict):the basic config for training
|
|
|
|
|
repeat_num(int): the repeat times of dataset. Default: 1.
|
|
|
|
|
batch_size(int): the batch size of dataset. Default: 32.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
dataset
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
load_func = partial(ds.Cifar10Dataset, dataset_path)
|
|
|
|
|
data_set = load_func(num_parallel_workers=8, shuffle=False)
|
|
|
|
|
|
|
|
|
|
resize_height = config.image_height
|
|
|
|
|
resize_width = config.image_width
|
|
|
|
|
|
|
|
|
|
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
|
|
|
|
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
|
|
|
|
|
|
|
|
|
# define map operations
|
|
|
|
|
resize_op = C.Resize((resize_height, resize_width))
|
|
|
|
|
normalize_op = C.Normalize(mean=mean, std=std)
|
|
|
|
|
changeswap_op = C.HWC2CHW()
|
|
|
|
|
c_trans = [resize_op, normalize_op, changeswap_op]
|
|
|
|
|
|
|
|
|
|
type_cast_op = C2.TypeCast(mstype.int32)
|
|
|
|
|
|
|
|
|
|
data_set = data_set.map(operations=c_trans, input_columns="image",
|
|
|
|
|
num_parallel_workers=8)
|
|
|
|
|
data_set = data_set.map(operations=type_cast_op,
|
|
|
|
|
input_columns="label", num_parallel_workers=8)
|
|
|
|
|
|
|
|
|
|
# apply batch operations
|
|
|
|
|
data_set = data_set.batch(batch_size, drop_remainder=True)
|
|
|
|
|
|
|
|
|
|
# apply dataset repeat operation
|
|
|
|
|
data_set = data_set.repeat(repeat_num)
|
|
|
|
|
|
|
|
|
|
return data_set
|