You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ops/test_tuple_slice.py

175 lines
6.1 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tuple_slice """
import numpy as np
5 years ago
import mindspore.ops.operations as P
from mindspore import Tensor
from mindspore.nn import Cell
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
from ....mindspore_test_framework.pipeline.forward.verify_exception \
import pipeline_for_verify_exception_for_case_by_case_config
class NetWork_1(Cell):
""" NetWork_1 definition """
5 years ago
def __init__(self):
super(NetWork_1, self).__init__()
self.addN = P.AddN()
self.index_0 = Tensor(3)
self.index_1 = Tensor([5])
self.index_3 = Tensor([True])
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[:]
tensor_tuple_slice1 = tensor_tuple[:self.index_0]
tensor_tuple_slice2 = tensor_tuple[self.index_3:]
tensor_tuple_slice3 = tensor_tuple[2:self.index_1:True]
sum0 = self.addN(tensor_tuple_slice0)
sum1 = self.addN(tensor_tuple_slice1)
sum2 = self.addN(tensor_tuple_slice2)
sum3 = self.addN(tensor_tuple_slice3)
ret = sum0 + sum1 + sum2 + sum3
return ret
class NetWork_2(Cell):
""" NetWork_2 definition """
5 years ago
def __init__(self):
super(NetWork_2, self).__init__()
self.addN = P.AddN()
self.step = Tensor([-1])
self.index_0 = Tensor(-6)
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[::self.step]
tensor_tuple_slice1 = tensor_tuple[-1::-1]
tensor_tuple_slice2 = tensor_tuple[:-4:-1]
tensor_tuple_slice3 = tensor_tuple[self.index_0:3]
tensor_tuple_slice4 = tensor_tuple[-1:-6:-2]
sum0 = self.addN(tensor_tuple_slice0)
sum1 = self.addN(tensor_tuple_slice1)
sum2 = self.addN(tensor_tuple_slice2)
sum3 = self.addN(tensor_tuple_slice3)
sum4 = self.addN(tensor_tuple_slice4)
ret = sum0 + sum1 + sum2 + sum3 + sum4
return ret
class NetWorkSliceStepZero(Cell):
""" NetWork_3 definition """
5 years ago
def __init__(self):
super(NetWorkSliceStepZero, self).__init__()
def construct(self, tensor_tuple):
tensor_tuple_slice = tensor_tuple[0:3:0]
return tensor_tuple_slice
class NetWorkOutOfBounds(Cell):
""" NetWork_3 definition """
def __init__(self):
super(NetWorkOutOfBounds, self).__init__()
def construct(self, tensor_tuple):
return tensor_tuple[100]
class NetWorkTensorSizeGreaterThanTwo(Cell):
""" NetWork_3 definition """
def __init__(self):
super(NetWorkTensorSizeGreaterThanTwo, self).__init__()
self.index_0 = Tensor([2, 3])
def construct(self, tensor_tuple):
return tensor_tuple[1:self.index_0]
class NetWorkTensorDtypeFloat(Cell):
""" NetWork_3 definition """
def __init__(self):
super(NetWorkTensorDtypeFloat, self).__init__()
self.index_0 = Tensor([2.1])
def construct(self, tensor_tuple):
return tensor_tuple[1:self.index_0]
test_cases = [
('SlicePositive', {
'block': NetWork_1(),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
('SliceNegative', {
'block': NetWork_2(),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
]
test_cases_for_verify_exception = [
('SliceStepZero', {
'block': (NetWorkSliceStepZero(), {'exception': ValueError}),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
('SliceOutOfBounds', {
'block': (NetWorkOutOfBounds(), {'exception': IndexError}),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
('SliceTensorSizeGreaterThanTwo', {
'block': (NetWorkTensorSizeGreaterThanTwo(), {'exception': TypeError}),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
('SliceTensorDtypeFloat', {
'block': (NetWorkTensorDtypeFloat(), {'exception': TypeError}),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
return test_cases
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
def test_check_exception():
return test_cases_for_verify_exception