|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test cell """
|
|
|
|
import copy
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor, Parameter
|
|
|
|
from mindspore.common.api import _executor
|
|
|
|
|
|
|
|
|
|
|
|
class ModA(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
super(ModA, self).__init__()
|
|
|
|
self.weight = Parameter(tensor, name="weight")
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class ModB(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
super(ModB, self).__init__()
|
|
|
|
self.weight = Parameter(tensor, name="weight")
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class ModC(nn.Cell):
|
|
|
|
def __init__(self, ta, tb):
|
|
|
|
super(ModC, self).__init__()
|
|
|
|
self.mod1 = ModA(ta)
|
|
|
|
self.mod2 = ModB(tb)
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
""" Net definition """
|
|
|
|
name_len = 4
|
|
|
|
cells_num = 3
|
|
|
|
|
|
|
|
def __init__(self, ta, tb):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.mod1 = ModA(ta)
|
|
|
|
self.mod2 = ModB(tb)
|
|
|
|
self.mod3 = ModC(ta, tb)
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class Net2(nn.Cell):
|
|
|
|
def __init__(self, ta, tb):
|
|
|
|
super(Net2, self).__init__(auto_prefix=False)
|
|
|
|
self.mod1 = ModA(ta)
|
|
|
|
self.mod2 = ModB(tb)
|
|
|
|
self.mod3 = ModC(ta, tb)
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNet(nn.Cell):
|
|
|
|
""" ConvNet definition """
|
|
|
|
image_h = 224
|
|
|
|
image_w = 224
|
|
|
|
output_ch = 64
|
|
|
|
|
|
|
|
def __init__(self, num_classes=10):
|
|
|
|
super(ConvNet, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(3, ConvNet.output_ch, kernel_size=7, stride=2, pad_mode="pad", padding=3)
|
|
|
|
self.bn1 = nn.BatchNorm2d(ConvNet.output_ch)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.fc = nn.Dense(
|
|
|
|
int(ConvNet.image_h * ConvNet.image_w * ConvNet.output_ch / (4 * 4)),
|
|
|
|
num_classes)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.maxpool(x)
|
|
|
|
x = self.flatten(x)
|
|
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def test_basic():
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
n = Net(ta, tb)
|
|
|
|
names = list(n.parameters_dict().keys())
|
|
|
|
assert len(names) == n.name_len
|
|
|
|
assert names[0] == "mod1.weight"
|
|
|
|
assert names[1] == "mod2.weight"
|
|
|
|
assert names[2] == "mod3.mod1.weight"
|
|
|
|
assert names[3] == "mod3.mod2.weight"
|
|
|
|
|
|
|
|
|
|
|
|
def test_parameter_name():
|
|
|
|
""" test_parameter_name """
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
n = Net(ta, tb)
|
|
|
|
names = []
|
|
|
|
for m in n.parameters_and_names():
|
|
|
|
if m[0]:
|
|
|
|
names.append(m[0])
|
|
|
|
assert names[0] == "mod1.weight"
|
|
|
|
assert names[1] == "mod2.weight"
|
|
|
|
assert names[2] == "mod3.mod1.weight"
|
|
|
|
assert names[3] == "mod3.mod2.weight"
|
|
|
|
|
|
|
|
|
|
|
|
def test_cell_name():
|
|
|
|
""" test_cell_name """
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
n = Net(ta, tb)
|
|
|
|
n.insert_child_to_cell('modNone', None)
|
|
|
|
names = []
|
|
|
|
for m in n.cells_and_names():
|
|
|
|
if m[0]:
|
|
|
|
names.append(m[0])
|
|
|
|
assert names[0] == "mod1"
|
|
|
|
assert names[1] == "mod2"
|
|
|
|
assert names[2] == "mod3"
|
|
|
|
assert names[3] == "mod3.mod1"
|
|
|
|
assert names[4] == "mod3.mod2"
|
|
|
|
|
|
|
|
|
|
|
|
def test_cells():
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
n = Net(ta, tb)
|
|
|
|
ch = list(n.cells())
|
|
|
|
assert len(ch) == n.cells_num
|
|
|
|
|
|
|
|
|
|
|
|
def test_exceptions():
|
|
|
|
""" test_exceptions """
|
|
|
|
t = Tensor(np.ones([2, 3]))
|
|
|
|
|
|
|
|
class ModError(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
self.weight = Parameter(tensor, name="weight")
|
|
|
|
super(ModError, self).__init__()
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
with pytest.raises(AttributeError):
|
|
|
|
ModError(t)
|
|
|
|
|
|
|
|
class ModError1(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
super().__init__()
|
|
|
|
self.weight = Parameter(tensor, name="weight")
|
|
|
|
self.weight = None
|
|
|
|
self.weight = ModA(tensor)
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
ModError1(t)
|
|
|
|
|
|
|
|
class ModError2(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
super().__init__()
|
|
|
|
self.mod = ModA(tensor)
|
|
|
|
self.mod = None
|
|
|
|
self.mod = tensor
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
ModError2(t)
|
|
|
|
|
|
|
|
m = nn.Cell()
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
|
|
m.construct()
|
|
|
|
|
|
|
|
|
|
|
|
def test_cell_copy():
|
|
|
|
net = ConvNet()
|
|
|
|
copy.deepcopy(net)
|
|
|
|
|
|
|
|
|
|
|
|
def test_del():
|
|
|
|
""" test_del """
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
n = Net(ta, tb)
|
|
|
|
names = list(n.parameters_dict().keys())
|
|
|
|
assert len(names) == n.name_len
|
|
|
|
del n.mod1
|
|
|
|
names = list(n.parameters_dict().keys())
|
|
|
|
assert len(names) == n.name_len - 1
|
|
|
|
with pytest.raises(AttributeError):
|
|
|
|
del n.mod1.weight
|
|
|
|
del n.mod2.weight
|
|
|
|
names = list(n.parameters_dict().keys())
|
|
|
|
assert len(names) == n.name_len - 2
|
|
|
|
with pytest.raises(AttributeError):
|
|
|
|
del n.mod
|
|
|
|
|
|
|
|
|
|
|
|
def test_add_attr():
|
|
|
|
""" test_add_attr """
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
p = Parameter(ta, name="weight")
|
|
|
|
m = nn.Cell()
|
|
|
|
m.insert_param_to_cell('weight', p)
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
m.insert_child_to_cell("network", p)
|
|
|
|
|
|
|
|
with pytest.raises(KeyError):
|
|
|
|
m.insert_param_to_cell('', p)
|
|
|
|
with pytest.raises(KeyError):
|
|
|
|
m.insert_param_to_cell('a.b', p)
|
|
|
|
m.insert_param_to_cell('weight', p)
|
|
|
|
with pytest.raises(KeyError):
|
|
|
|
m.insert_child_to_cell('', ModA(ta))
|
|
|
|
with pytest.raises(KeyError):
|
|
|
|
m.insert_child_to_cell('a.b', ModB(tb))
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
m.insert_child_to_cell('buffer', tb)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
m.insert_param_to_cell('w', ta)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
m.insert_child_to_cell('m', p)
|
|
|
|
|
|
|
|
class ModAddCellError(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
self.mod = ModA(tensor)
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
with pytest.raises(AttributeError):
|
|
|
|
ModAddCellError(ta)
|
|
|
|
|
|
|
|
|
|
|
|
def test_train_eval():
|
|
|
|
m = nn.Cell()
|
|
|
|
assert not m.training
|
|
|
|
m.set_train()
|
|
|
|
assert m.training
|
|
|
|
m.set_train(False)
|
|
|
|
assert not m.training
|
|
|
|
|
|
|
|
|
|
|
|
def test_stop_update_name():
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
tb = Tensor(np.ones([1, 4]))
|
|
|
|
n = Net2(ta, tb)
|
|
|
|
names = list(n.parameters_dict().keys())
|
|
|
|
assert names[0] == "weight"
|
|
|
|
assert names[1] == "mod1.weight"
|
|
|
|
assert names[2] == "mod2.weight"
|
|
|
|
|
|
|
|
|
|
|
|
class ModelName(nn.Cell):
|
|
|
|
def __init__(self, tensor):
|
|
|
|
super(ModelName, self).__init__()
|
|
|
|
self.w2 = Parameter(tensor, name="weight")
|
|
|
|
self.w1 = Parameter(tensor, name="weight")
|
|
|
|
self.w3 = Parameter(tensor, name=None)
|
|
|
|
self.w4 = Parameter(tensor, name=None)
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def test_cell_names():
|
|
|
|
ta = Tensor(np.ones([2, 3]))
|
|
|
|
mn = ModelName(ta)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_executor.compile(mn)
|