You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/Transformer/README.md

176 lines
8.1 KiB

# Transformer Example
## Description
This example implements training and evaluation of Transformer Model, which is introduced in the following paper:
- Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan N Gomez, Ł ukaszKaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS 2017, pages 59986008.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download and preprocess the WMT English-German dataset for training and evaluation.
> Notes:If you are running an evaluation task, prepare the corresponding checkpoint file.
## Example structure
```shell
.
└─Transformer
├─README.md
├─scripts
├─process_output.sh
├─replace-quote.perl
├─run_distribute_train.sh
└─run_standalone_train.sh
├─src
├─__init__.py
├─beam_search.py
├─config.py
├─dataset.py
├─eval_config.py
├─lr_schedule.py
├─process_output.py
├─tokenization.py
├─transformer_for_train.py
├─transformer_model.py
└─weight_init.py
├─create_data.py
├─eval.py
└─train.py
```
---
## Prepare the dataset
- You may use this [shell script](https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh) to download and preprocess WMT English-German dataset. Assuming you get the following files:
- train.tok.clean.bpe.32000.en
- train.tok.clean.bpe.32000.de
- vocab.bpe.32000
- newstest2014.tok.bpe.32000.en
- newstest2014.tok.bpe.32000.de
- newstest2014.tok.de
- Convert the original data to mindrecord for training:
``` bash
paste train.tok.clean.bpe.32000.en train.tok.clean.bpe.32000.de > train.all
python create_data.py --input_file train.all --vocab_file vocab.bpe.32000 --output_file /path/ende-l128-mindrecord --max_seq_length 128
```
- Convert the original data to mindrecord for evaluation:
``` bash
paste newstest2014.tok.bpe.32000.en newstest2014.tok.bpe.32000.de > test.all
python create_data.py --input_file test.all --vocab_file vocab.bpe.32000 --output_file /path/newstest2014-l128-mindrecord --num_splits 1 --max_seq_length 128 --clip_to_max_len True
```
## Running the example
### Training
- Set options in `config.py`, including loss_scale, learning rate and network hyperparameters. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#mindspore) for more information about dataset.
- Run `run_standalone_train.sh` for non-distributed training of Transformer model.
``` bash
sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_PATH
```
- Run `run_distribute_train.sh` for distributed training of Transformer model.
``` bash
sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_PATH MINDSPORE_HCCL_CONFIG_PATH
```
### Evaluation
- Set options in `eval_config.py`. Make sure the 'data_file', 'model_file' and 'output_file' are set to your own path.
- Run `eval.py` for evaluation of Transformer model.
```bash
python eval.py
```
- Run `process_output.sh` to process the output token ids to get the real translation results.
```bash
sh scripts/process_output.sh REF_DATA EVAL_OUTPUT VOCAB_FILE
```
You will get two files, REF_DATA.forbleu and EVAL_OUTPUT.forbleu, for BLEU score calculation.
- Calculate BLEU score, you may use this [perl script](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl) and run following command to get the BLEU score.
```bash
perl multi-bleu.perl REF_DATA.forbleu < EVAL_OUTPUT.forbleu
```
---
## Usage
### Training
```
usage: train.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [--device_id N]
[--enable_save_ckpt ENABLE_SAVE_CKPT]
[--enable_lossscale ENABLE_LOSSSCALE] [--do_shuffle DO_SHUFFLE]
[--enable_data_sink ENABLE_DATA_SINK] [--save_checkpoint_steps N]
[--save_checkpoint_num N] [--save_checkpoint_path SAVE_CHECKPOINT_PATH]
[--data_path DATA_PATH]
options:
--distribute pre_training by serveral devices: "true"(training by more than 1 device) | "false", default is "false"
--epoch_size epoch size: N, default is 52
--device_num number of used devices: N, default is 1
--device_id device id: N, default is 0
--enable_save_ckpt enable save checkpoint: "true" | "false", default is "true"
--enable_lossscale enable lossscale: "true" | "false", default is "true"
--do_shuffle enable shuffle: "true" | "false", default is "true"
--enable_data_sink enable data sink: "true" | "false", default is "false"
--checkpoint_path path to load checkpoint files: PATH, default is ""
--save_checkpoint_steps steps for saving checkpoint files: N, default is 2500
--save_checkpoint_num number for saving checkpoint files: N, default is 30
--save_checkpoint_path path to save checkpoint files: PATH, default is "./checkpoint/"
--data_path path to dataset file: PATH, default is ""
```
## Options and Parameters
It contains of parameters of Transformer model and options for training and evaluation, which is set in file `config.py` and `evaluation_config.py` respectively.
### Options:
```
config.py:
transformer_network version of Transformer model: base | large, default is large
init_loss_scale_value initial value of loss scale: N, default is 2^10
scale_factor factor used to update loss scale: N, default is 2
scale_window steps for once updatation of loss scale: N, default is 2000
optimizer optimizer used in the network: Adam, default is "Adam"
eval_config.py:
transformer_network version of Transformer model: base | large, default is large
data_file data file: PATH
model_file checkpoint file to be loaded: PATH
output_file output file of evaluation: PATH
```
### Parameters:
```
Parameters for dataset and network (Training/Evaluation):
batch_size batch size of input dataset: N, default is 96
seq_length length of input sequence: N, default is 128
vocab_size size of each embedding vector: N, default is 36560
hidden_size size of Transformer encoder layers: N, default is 1024
num_hidden_layers number of hidden layers: N, default is 6
num_attention_heads number of attention heads: N, default is 16
intermediate_size size of intermediate layer: N, default is 4096
hidden_act activation function used: ACTIVATION, default is "relu"
hidden_dropout_prob dropout probability for TransformerOutput: Q, default is 0.3
attention_probs_dropout_prob dropout probability for TransformerAttention: Q, default is 0.3
max_position_embeddings maximum length of sequences: N, default is 128
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
label_smoothing label smoothing setting: Q, default is 0.1
input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
beam_width beam width setting: N, default is 4
max_decode_length max decode length in evaluation: N, default is 80
length_penalty_weight normalize scores of translations according to their length: Q, default is 1.0
compute_type compute type in Transformer: mstype.float16 | mstype.float32, default is mstype.float16
Parameters for learning rate:
learning_rate value of learning rate: Q
warmup_steps steps of the learning rate warm up: N
start_decay_step step of the learning rate to decay: N
min_lr minimal learning rate: Q
```