You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/mobilenetv2_quant/train.py

207 lines
8.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Train mobilenetV2 on ImageNet"""
import os
import argparse
from mindspore import context
from mindspore import Tensor
from mindspore import nn
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.serialization import load_checkpoint
from mindspore.communication.management import init, get_group_size, get_rank
from mindspore.compression.quant import QuantizationAwareTraining
from mindspore.compression.quant.quant_utils import load_nonquant_param_into_quant_net
from mindspore.common import set_seed
from src.dataset import create_dataset
from src.lr_generator import get_lr
from src.utils import Monitor, CrossEntropyWithLabelSmooth
from src.config import config_ascend_quant, config_gpu_quant
from src.mobilenetV2 import mobilenetV2
set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
parser.add_argument('--device_target', type=str, default=None, help='Run device target')
args_opt = parser.parse_args()
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
rank_id = int(os.getenv('RANK_ID'))
rank_size = int(os.getenv('RANK_SIZE'))
run_distribute = rank_size > 1
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend",
device_id=device_id, save_graphs=False)
elif args_opt.device_target == "GPU":
init()
context.set_auto_parallel_context(device_num=get_group_size(),
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU",
save_graphs=False)
else:
raise ValueError("Unsupported device target.")
def train_on_ascend():
config = config_ascend_quant
print("training args: {}".format(args_opt))
print("training configure: {}".format(config))
print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
epoch_size = config.epoch_size
# distribute init
if run_distribute:
context.set_auto_parallel_context(device_num=rank_size,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
init()
# define network
network = mobilenetV2(num_classes=config.num_classes)
# define loss
if config.label_smooth > 0:
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
else:
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# define dataset
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
config=config,
device_target=args_opt.device_target,
repeat_num=1,
batch_size=config.batch_size)
step_size = dataset.get_dataset_size()
# load pre trained ckpt
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
load_nonquant_param_into_quant_net(network, param_dict)
# convert fusion network to quantization aware network
quantizer = QuantizationAwareTraining(bn_fold=True,
per_channel=[True, False],
symmetric=[True, False])
network = quantizer.quantize(network)
# get learning rate
lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
lr_init=0,
lr_end=0,
lr_max=config.lr,
warmup_epochs=config.warmup_epochs,
total_epochs=epoch_size + config.start_epoch,
steps_per_epoch=step_size))
# define optimization
opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
config.weight_decay)
# define model
model = Model(network, loss_fn=loss, optimizer=opt)
print("============== Starting Training ==============")
callback = None
if rank_id == 0:
callback = [Monitor(lr_init=lr.asnumpy())]
if config.save_checkpoint:
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2",
directory=config.save_checkpoint_path,
config=config_ck)
callback += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=callback)
print("============== End Training ==============")
def train_on_gpu():
config = config_gpu_quant
print("training args: {}".format(args_opt))
print("training configure: {}".format(config))
# define network
network = mobilenetV2(num_classes=config.num_classes)
# define loss
if config.label_smooth > 0:
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth,
num_classes=config.num_classes)
else:
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# define dataset
epoch_size = config.epoch_size
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
config=config,
device_target=args_opt.device_target,
repeat_num=1,
batch_size=config.batch_size)
step_size = dataset.get_dataset_size()
# resume
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
load_nonquant_param_into_quant_net(network, param_dict)
# convert fusion network to quantization aware network
quantizer = QuantizationAwareTraining(bn_fold=True,
per_channel=[True, False],
symmetric=[False, False],
freeze_bn=1000000,
quant_delay=step_size * 2)
network = quantizer.quantize(network)
# get learning rate
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
lr_init=0,
lr_end=0,
lr_max=config.lr,
warmup_epochs=config.warmup_epochs,
total_epochs=epoch_size + config.start_epoch,
steps_per_epoch=step_size))
# define optimization
opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
config.weight_decay, config.loss_scale)
# define model
model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
print("============== Starting Training ==============")
callback = [Monitor(lr_init=lr.asnumpy())]
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
if config.save_checkpoint:
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
callback += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=callback)
print("============== End Training ==============")
if __name__ == '__main__':
if args_opt.device_target == "Ascend":
train_on_ascend()
elif args_opt.device_target == "GPU":
train_on_gpu()
else:
raise ValueError("Unsupported device target.")