You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/yolov3_resnet18/export.py

48 lines
2.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
import mindspore as ms
from mindspore import context, Tensor
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
from src.yolov3 import yolov3_resnet18
from src.config import ConfigYOLOV3ResNet18
parser = argparse.ArgumentParser(description='yolov3_resnet18 export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
4 years ago
parser.add_argument("--file_name", type=str, default="yolov3_resnet18", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
if __name__ == "__main__":
config = ConfigYOLOV3ResNet18()
network = yolov3_resnet18(config)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(network, param_dict)
network.set_train(False)
shape = [args.batch_size, 3] + config.img_shape
input_data = Tensor(np.zeros(shape), ms.float32)
export(network, input_data, file_name=args.file_name, file_format=args.file_format)