|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import random
|
|
|
|
import grpc
|
|
|
|
import numpy as np
|
|
|
|
import ms_service_pb2
|
|
|
|
import ms_service_pb2_grpc
|
|
|
|
import mindspore.dataset as de
|
|
|
|
from mindspore import Tensor, context
|
|
|
|
from mindspore import log as logger
|
|
|
|
from tests.st.networks.models.bert.src.bert_model import BertModel
|
|
|
|
from .generate_model import AddNet, bert_net_cfg
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
|
|
random.seed(1)
|
|
|
|
np.random.seed(1)
|
|
|
|
de.config.set_seed(1)
|
|
|
|
|
|
|
|
def test_add():
|
|
|
|
channel = grpc.insecure_channel('localhost:5500')
|
|
|
|
stub = ms_service_pb2_grpc.MSServiceStub(channel)
|
|
|
|
request = ms_service_pb2.PredictRequest()
|
|
|
|
|
|
|
|
x = request.data.add()
|
|
|
|
x.tensor_shape.dims.extend([4])
|
|
|
|
x.tensor_type = ms_service_pb2.MS_FLOAT32
|
|
|
|
x.data = (np.ones([4]).astype(np.float32)).tobytes()
|
|
|
|
|
|
|
|
y = request.data.add()
|
|
|
|
y.tensor_shape.dims.extend([4])
|
|
|
|
y.tensor_type = ms_service_pb2.MS_FLOAT32
|
|
|
|
y.data = (np.ones([4]).astype(np.float32)).tobytes()
|
|
|
|
|
|
|
|
result = stub.Predict(request)
|
|
|
|
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
|
|
|
|
print("ms client received: ")
|
|
|
|
print(result_np)
|
|
|
|
|
|
|
|
net = AddNet()
|
|
|
|
net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32)))
|
|
|
|
print("add net out: ")
|
|
|
|
print(net_out)
|
|
|
|
assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
|
|
|
|
|
|
|
|
def test_bert():
|
|
|
|
MAX_MESSAGE_LENGTH = 0x7fffffff
|
|
|
|
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
|
|
|
|
segment_ids = np.zeros((2, 32), dtype=np.int32)
|
|
|
|
input_mask = np.zeros((2, 32), dtype=np.int32)
|
|
|
|
channel = grpc.insecure_channel('localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
|
|
|
|
('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)])
|
|
|
|
stub = ms_service_pb2_grpc.MSServiceStub(channel)
|
|
|
|
request = ms_service_pb2.PredictRequest()
|
|
|
|
|
|
|
|
x = request.data.add()
|
|
|
|
x.tensor_shape.dims.extend([2, 32])
|
|
|
|
x.tensor_type = ms_service_pb2.MS_INT32
|
|
|
|
x.data = input_ids.tobytes()
|
|
|
|
|
|
|
|
y = request.data.add()
|
|
|
|
y.tensor_shape.dims.extend([2, 32])
|
|
|
|
y.tensor_type = ms_service_pb2.MS_INT32
|
|
|
|
y.data = segment_ids.tobytes()
|
|
|
|
|
|
|
|
z = request.data.add()
|
|
|
|
z.tensor_shape.dims.extend([2, 32])
|
|
|
|
z.tensor_type = ms_service_pb2.MS_INT32
|
|
|
|
z.data = input_mask.tobytes()
|
|
|
|
|
|
|
|
result = stub.Predict(request)
|
|
|
|
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
|
|
|
|
print("ms client received: ")
|
|
|
|
print(result_np)
|
|
|
|
|
|
|
|
net = BertModel(bert_net_cfg, False)
|
|
|
|
bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask))
|
|
|
|
print("bert out: ")
|
|
|
|
print(bert_out[0])
|
|
|
|
bert_out_size = len(bert_out)
|
|
|
|
for i in range(bert_out_size):
|
|
|
|
result_np = np.frombuffer(result.result[i].data, dtype=np.float32).reshape(result.result[i].tensor_shape.dims)
|
|
|
|
logger.info("i:{}, result_np:{}, bert_out:{}".
|
|
|
|
format(i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape))
|
|
|
|
assert np.allclose(bert_out[i].asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
|