You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.5 KiB
108 lines
3.5 KiB
5 years ago
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||
|
from util import save_and_check
|
||
|
|
||
|
import mindspore.dataset as ds
|
||
|
from mindspore import log as logger
|
||
|
|
||
|
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||
|
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||
|
COLUMNS_TF = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
||
|
"col_sint16", "col_sint32", "col_sint64"]
|
||
|
GENERATE_GOLDEN = False
|
||
|
|
||
|
# Data for CIFAR and MNIST are not part of build tree
|
||
|
# They need to be downloaded directly
|
||
|
# prep_data.py can be exuted or code below
|
||
|
# import sys
|
||
|
# sys.path.insert(0,"../../data")
|
||
|
# import prep_data
|
||
|
# prep_data.download_all_for_test("../../data")
|
||
|
IMG_DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||
|
IMG_SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||
|
|
||
|
DATA_DIR_TF2 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||
|
SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||
|
|
||
|
|
||
|
def test_tf_repeat_01():
|
||
|
"""
|
||
|
a simple repeat operation.
|
||
|
"""
|
||
|
logger.info("Test Simple Repeat")
|
||
|
# define parameters
|
||
|
repeat_count = 2
|
||
|
parameters = {"params": {'repeat_count': repeat_count}}
|
||
|
|
||
|
# apply dataset operations
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
||
|
data1 = data1.repeat(repeat_count)
|
||
|
|
||
|
filename = "repeat_result.npz"
|
||
|
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||
|
|
||
|
|
||
|
def test_tf_repeat_02():
|
||
|
"""
|
||
|
a simple repeat operation to tes infinite
|
||
|
"""
|
||
|
logger.info("Test Infinite Repeat")
|
||
|
# define parameters
|
||
|
repeat_count = -1
|
||
|
|
||
|
# apply dataset operations
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
||
|
data1 = data1.repeat(repeat_count)
|
||
|
|
||
|
itr = 0
|
||
|
for _ in data1:
|
||
|
itr = itr + 1
|
||
|
if itr == 100:
|
||
|
break
|
||
|
assert itr == 100
|
||
|
|
||
|
|
||
|
def test_tf_repeat_03():
|
||
|
'''repeat and batch '''
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
|
||
|
|
||
|
batch_size = 32
|
||
|
resize_height, resize_width = 32, 32
|
||
|
decode_op = vision.Decode()
|
||
|
resize_op = vision.Resize((resize_height, resize_width), interpolation=ds.transforms.vision.Inter.LINEAR)
|
||
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||
|
data1 = data1.map(input_columns=["image"], operations=resize_op)
|
||
|
data1 = data1.repeat(22)
|
||
|
data1 = data1.batch(batch_size, drop_remainder=True)
|
||
|
|
||
|
num_iter = 0
|
||
|
for item in data1.create_dict_iterator():
|
||
|
num_iter += 1
|
||
|
logger.info("Number of tf data in data1: {}".format(num_iter))
|
||
|
assert num_iter == 2
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
logger.info("--------test tf repeat 01---------")
|
||
|
# test_repeat_01()
|
||
|
|
||
|
logger.info("--------test tf repeat 02---------")
|
||
|
# test_repeat_02()
|
||
|
|
||
|
logger.info("--------test tf repeat 03---------")
|
||
|
test_tf_repeat_03()
|
||
|
|